Menu Close

find-the-value-of-C-n-0-2-C-n-1-2-C-n-2-2-C-n-n-2-




Question Number 26133 by abdo imad last updated on 21/Dec/17
find the value of  (C_n ^(0  ) )^2  +(C_n ^1 )^2  +(C_n ^2 )^2  +...(C_n ^n )^2 .
findthevalueof(Cn0)2+(Cn1)2+(Cn2)2+(Cnn)2.
Commented by abdo imad last updated on 21/Dec/17
let put  A_n =( C_n ^0  )^2   +( C_n ^1  )^2   +...+(C_n ^n  )^2   we have  (1+x)^(2n)  =  Σ_(k=0) ^(k=2n)  x^k   = C_(2n) ^0 +C_(2n) ^1 x +C_(2n) ^2 x^2  +...C_(2n) ^(2n)  x^(2n)   but (1+x)^(2n) =(1+x)^n .(1+x)^n =( Σ_(k=0) ^(k=n)  C_n ^k  x^k )(Σ_(k=0) ^(k=n)   C_n ^k  x^k )  = Σ_(k=0) ^(k=2n)  λ_k  x^k    and  λ_k =Σ_(i+j=k)  a_i  b_j   =  Σ_(i=0) ^(i=k)   a_i  b_(k−i)   =  Σ_(i=0) ^(i=k)   C_n ^i  C_n ^(k−i)   −−>λ_n = Σ_(i=0) ^(i=n)  C_n ^i   C_n ^(n−i)   =Σ_(i=0) ^(i=n)  ( C_n ^i )^2   but λ_n  is the coefficient of x^n −−> λ_n =C_(2n) ^n   A_n = C_(2n) ^n   =  (((2n)!)/((n!)^2 ))  .
letputAn=(Cn0)2+(Cn1)2++(Cnn)2wehave(1+x)2n=k=0k=2nxk=C2n0+C2n1x+C2n2x2+C2n2nx2nbut(1+x)2n=(1+x)n.(1+x)n=(k=0k=nCnkxk)(k=0k=nCnkxk)=k=0k=2nλkxkandλk=i+j=kaibj=i=0i=kaibki=i=0i=kCniCnki>λn=i=0i=nCniCnni=i=0i=n(Cni)2butλnisthecoefficientofxn>λn=C2nnAn=C2nn=(2n)!(n!)2.
Answered by Tinkutara last updated on 21/Dec/17
Commented by abdo imad last updated on 21/Dec/17
a lots of calculus but the method is true .you can  use Σ its more easy...thanks....
alotsofcalculusbutthemethodistrue.youcanuseΣitsmoreeasythanks.

Leave a Reply

Your email address will not be published. Required fields are marked *