Question Number 33204 by prof Abdo imad last updated on 12/Apr/18
$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left({ax}\right)}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\:{dx}. \\ $$
Commented by abdo imad last updated on 13/Apr/18
$${let}\:{put}\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({ax}\right)}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx} \\ $$$${f}\left({a}\right)\:={Re}\:\left(\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{iax}} }{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx}\right)\:{let}\:{consider}\:{the}\:{complex} \\ $$$${function}\:\varphi\left({z}\right)\:=\:\frac{{e}^{{iaz}} }{\mathrm{1}+{z}+{z}^{\mathrm{2}} }\:{the}\:{poles}\:{of}\:\varphi\:{are}\:{j}\:{and}\:\overset{−} {{j}} \\ $$$${j}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:{and}\:\varphi\left({z}\right)\:=\frac{{e}^{{iaz}} }{\left({z}−{j}\right)\left({z}−\overset{−} {{j}}\right)} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{j}\right) \\ $$$${Res}\left(\varphi,{j}\right)\:=\:\frac{{e}^{{iaj}} }{{j}−\overset{−} {{j}}}\:=\frac{{e}^{{ia}\left(−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} }{\mathrm{2}{iIm}\left({j}\right)}\:=\:\frac{{e}^{−\frac{{ia}}{\mathrm{2}}} \:.{e}^{−{a}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} }{\mathrm{2}{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \\ $$$$=\frac{{e}^{−{a}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} }{{i}\sqrt{\mathrm{3}}}\:\left(\:{cos}\left(\frac{{a}}{\mathrm{2}}\right)\:−{isin}\left(\frac{{a}}{\mathrm{2}}\right)\right)\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{−{a}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} }{{i}\sqrt{\mathrm{3}}}\left(\:{cos}\left(\frac{{a}}{\mathrm{2}}\right)−{isin}\left(\frac{{a}}{\mathrm{2}}\right)\right)\Rightarrow \\ $$$${f}\left({a}\right)\:=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\:{cos}\left(\frac{{a}}{\mathrm{2}}\right).{e}^{−{a}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \:. \\ $$$$ \\ $$