Menu Close

find-the-value-of-cosx-cos-2x-x-2-9-dx-




Question Number 35215 by abdo mathsup 649 cc last updated on 16/May/18
find the value of   ∫_(−∞) ^(+∞)    ((cosx +cos(2x))/(x^2  +9))dx
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cosx}\:+{cos}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$
Commented by abdo mathsup 649 cc last updated on 23/May/18
let put I  = ∫_(−∞) ^(+∞)   ((cosx +cos(2x))/(x^2  +9))dx  = Re( ∫_(−∞) ^(+∞)   ((e^(ix)   + e^(i2x) )/(x^2  +9))dx) let consider the complex  function ϕ(z) = ((e^(iz)   +e^(i2z) )/(z^2  +9))  ϕ(z) = ((e^(iz)  +e^(i2z) )/((z−3i)(z+3i))) so the poles of ϕ are  3i and −3i(simples)  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ Res(ϕ,3i)  Res(ϕ,3i) = ((e^(i(3i))  +e^(2i(3i)) )/(6i)) = ((e^(−3)  + e^(−6) )/(6i)) ⇒  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ ((e^(−3)  +e^(−6) )/(6i)) =(π/3){ e^(−3)  +e^(−6) } ⇒  ★  I  = (π/3){ e^(−3)  +e^(−6) }★
$${let}\:{put}\:{I}\:\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{cosx}\:+{cos}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$$$=\:{Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{ix}} \:\:+\:{e}^{{i}\mathrm{2}{x}} }{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx}\right)\:{let}\:{consider}\:{the}\:{complex} \\ $$$${function}\:\varphi\left({z}\right)\:=\:\frac{{e}^{{iz}} \:\:+{e}^{{i}\mathrm{2}{z}} }{{z}^{\mathrm{2}} \:+\mathrm{9}} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{e}^{{iz}} \:+{e}^{{i}\mathrm{2}{z}} }{\left({z}−\mathrm{3}{i}\right)\left({z}+\mathrm{3}{i}\right)}\:{so}\:{the}\:{poles}\:{of}\:\varphi\:{are} \\ $$$$\mathrm{3}{i}\:{and}\:−\mathrm{3}{i}\left({simples}\right) \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\mathrm{3}{i}\right) \\ $$$${Res}\left(\varphi,\mathrm{3}{i}\right)\:=\:\frac{{e}^{{i}\left(\mathrm{3}{i}\right)} \:+{e}^{\mathrm{2}{i}\left(\mathrm{3}{i}\right)} }{\mathrm{6}{i}}\:=\:\frac{{e}^{−\mathrm{3}} \:+\:{e}^{−\mathrm{6}} }{\mathrm{6}{i}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{−\mathrm{3}} \:+{e}^{−\mathrm{6}} }{\mathrm{6}{i}}\:=\frac{\pi}{\mathrm{3}}\left\{\:{e}^{−\mathrm{3}} \:+{e}^{−\mathrm{6}} \right\}\:\Rightarrow \\ $$$$\bigstar\:\:{I}\:\:=\:\frac{\pi}{\mathrm{3}}\left\{\:{e}^{−\mathrm{3}} \:+{e}^{−\mathrm{6}} \right\}\bigstar \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *