find-the-value-of-cosx-x-2-1-n-dx-n-fromN-and-n-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 163109 by mathmax by abdo last updated on 03/Jan/22 findthevalueof∫−∞+∞cosx(x2+1)ndx(nfromNandn⩾1) Answered by mathmax by abdo last updated on 05/Jan/22 An=Re(∫−∞+∞eix(x2+1)ndx)letΨ(z)=eiz(z2+1)n⇒Ψ(z)=eiz(z−i)n(z+i)nthepolesofΨareiand−i(ordre=n)∫RΨ(z)dz=2iπRes(Ψ,i)Res(Ψ,i)=limz→i1(n−1)!{(z−i)nΨ(z)})n−1)=1(n−1)!limz→i{(z+i)−neiz}(n−1)=1(n−1)!limz→i∑k=0n−1Cn−1k{(z+i)−n}(k)(eiz)(n−1−k)wehave(eiz)(n−1−k)=in−1−keizletfind(z+i)p}(k)(z+i)p}(1)=p(z+i)p−1(z+i)p}(2)=p(p−1)(z+i)p−2⇒byrecurrence(z+i)p}(k)=p(p−1)….(p−k+1)(z+i)p−k⇒{(z+i)−n}(k)=(−n)(−n−1)….(−n−k+1)(z+i)−n−k=(−1)kn(n+1)…(n+k−1)(z+i)−n−k⇒Res(Ψ,i)=1(n−1)!e−1∑k=0n−1Cn−1kin−1−k(−1)kn(n+1)…(n+k−1)(2i)−n−k=1(n−1)!e−1∑k=0n−1Cn−1kin−1−k(−1)kn(n+1)….(n+k−1)i−n−k2n+k=e−12n(n−1)!∑k=0n−1Cn−1k(−i)(−1)2kn(n+1)….(n+k−1)2k⇒∫RΨ(z)dz=2πe−12n(n−1)!∑k=0n−1n(n+1)…(n+k−1)2k×Cnk=Re(∫….)=∫−∞+∞cosx(x2+1)ndx Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calcul-en-fonction-de-n-k-0-n-3-k-1-k-n-k-0-k-n-sin-kx-k-n-Next Next post: let-give-f-x-0-pi-2-dt-1-x-tant-1-find-a-simple-form-of-f-x-2-calculate-0-pi-2-tant-1-xtant-2-dt-3-give-the-value-of-0-pi-2-tant-1-3-tant-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.