Menu Close

find-the-value-of-cosx-x-2-1-n-dx-n-fromN-and-n-1-




Question Number 163109 by mathmax by abdo last updated on 03/Jan/22
find the value of ∫_(−∞) ^(+∞)  ((cosx)/((x^2 +1)^n ))dx     (n fromN and n≥1)
findthevalueof+cosx(x2+1)ndx(nfromNandn1)
Answered by mathmax by abdo last updated on 05/Jan/22
A_n =Re(∫_(−∞) ^(+∞)  (e^(ix) /((x^2 +1)^n ))dx) let Ψ(z)=(e^(iz) /((z^2 +1)^n )) ⇒  Ψ(z)=(e^(iz) /((z−i)^n (z+i)^n ))  the poles of Ψ are i and −i(ordre=n)  ∫_R Ψ(z)dz =2iπ Res(Ψ,i)  Res(Ψ,i)=lim_(z→i) (1/((n−1)!)){(z−i)^n Ψ(z)}^()n−1))   =(1/((n−1)!))lim_(z→i)   {(z+i)^(−n)  e^(iz) }^((n−1))   =(1/((n−1)!))lim_(z→i)    Σ_(k=0) ^(n−1)   C_(n−1) ^k {(z+i)^(−n) }^((k))  (e^(iz) )^((n−1−k))   we have (e^(iz) )^((n−1−k)) =i^(n−1−k)  e^(iz)   let find (z+i)^p }^((k))   (z+i)^p }^((1)) =p(z+i)^(p−1)     (z+i)^p }^((2)) =p(p−1)(z+i)^(p−2)  ⇒by recurrence  (z+i)^p }^((k)) =p(p−1)....(p−k+1)(z+i)^(p−k)  ⇒  {(z+i)^(−n) }^((k))  =(−n)(−n−1)....(−n−k+1)(z+i)^(−n−k)   =(−1)^k n(n+1)...(n+k−1)(z+i)^(−n−k)  ⇒  Res(Ψ,i)=(1/((n−1)!)) e^(−1)  Σ_(k=0) ^(n−1) C_(n−1) ^k i^(n−1−k) (−1)^k n(n+1)...(n+k−1)(2i)^(−n−k)   =(1/((n−1)!))e^(−1) Σ_(k=0) ^(n−1)  C_(n−1) ^k  ((i^(n−1−k) (−1)^k n(n+1)....(n+k−1)i^(−n−k) )/(2^(n+k)  ))  =(e^(−1) /(2^n (n−1)!))Σ_(k=0) ^(n−1)  C_(n−1) ^k  (−i)(−1)^(2k) ((n(n+1)....(n+k−1))/2^k ) ⇒  ∫_R Ψ(z)dz =((2πe^(−1) )/(2^n (n−1)!))Σ_(k=0) ^(n−1)  ((n(n+1)...(n+k−1))/2^k )×C_n ^k   =Re(∫....)=∫_(−∞) ^(+∞)  ((cosx)/((x^2  +1)^n ))dx
An=Re(+eix(x2+1)ndx)letΨ(z)=eiz(z2+1)nΨ(z)=eiz(zi)n(z+i)nthepolesofΨareiandi(ordre=n)RΨ(z)dz=2iπRes(Ψ,i)Res(Ψ,i)=limzi1(n1)!{(zi)nΨ(z)})n1)=1(n1)!limzi{(z+i)neiz}(n1)=1(n1)!limzik=0n1Cn1k{(z+i)n}(k)(eiz)(n1k)wehave(eiz)(n1k)=in1keizletfind(z+i)p}(k)(z+i)p}(1)=p(z+i)p1(z+i)p}(2)=p(p1)(z+i)p2byrecurrence(z+i)p}(k)=p(p1).(pk+1)(z+i)pk{(z+i)n}(k)=(n)(n1).(nk+1)(z+i)nk=(1)kn(n+1)(n+k1)(z+i)nkRes(Ψ,i)=1(n1)!e1k=0n1Cn1kin1k(1)kn(n+1)(n+k1)(2i)nk=1(n1)!e1k=0n1Cn1kin1k(1)kn(n+1).(n+k1)ink2n+k=e12n(n1)!k=0n1Cn1k(i)(1)2kn(n+1).(n+k1)2kRΨ(z)dz=2πe12n(n1)!k=0n1n(n+1)(n+k1)2k×Cnk=Re(.)=+cosx(x2+1)ndx

Leave a Reply

Your email address will not be published. Required fields are marked *