Menu Close

find-the-value-of-D-x-2-y-dxdy-on-the-domain-D-x-y-R-2-x-2-y-2-2x-0-and-y-0-




Question Number 26398 by abdo imad last updated on 25/Dec/17
find the value of  ∫∫_D  x^2 y dxdy   on the domain  D={(x.y)∈R^2 / x^2  +y^2  −2x≤0 and y≥0}
findthevalueofDx2ydxdyonthedomainD={(x.y)R2/x2+y22x0andy0}
Commented by abdo imad last updated on 25/Dec/17
let put f(x.,y)=x^2 y and ω={(r,θ)/  0≤r≤1 and 0≤θ≤πthe  aplication ϕ  w−−>D/(r,θ)−>ϕ(r,θ)=(x,y)and  x=1+rcosθ  ,y= rsinθ  is a C^1 dffeomorphsme⇒  ∫∫_D f(x,y)dxdy  ==∫∫_w foϕ(r,θ) /j_ϕ /drdθ  M_(j(ϕ)) = (_(snθ                rcosθ) ^(cosθ              −rsinθ)   )   and det(Mj(ϕ))=r⇒  ∫∫_D f(x,y)dxdy  =  ∫∫_(0≤r≤1_(0≤θ≤π) )    (1+rcosθ)^2 rsinθ rdrdθ  =∫∫_w r^2 (1+2rcosθ +r^2 cos^2 θ)sinθdrdθ  =∫_0 ^1 r^2 dr.∫_0 ^π  sinθdθ + 2∫_0 ^1 r^3 dr ∫_0 ^π cosθsinθdθ+ ∫_0 ^1  r^4 dr.∫_0 ^π cos^2 θ sinθdθ  =(2/3)  + (1/4) .0 + (1/5).(−(1/3))(−2)=(2/3) + (2/(15))  = (4/5)
letputf(x.,y)=x2yandω={(r,θ)/0r1and0θπtheaplicationφw>D/(r,θ)>φ(r,θ)=(x,y)andx=1+rcosθ,y=rsinθisaC1dffeomorphsmeDf(x,y)dxdy==wfoφ(r,θ)/jφ/drdθMj(φ)=(snθrcosθcosθrsinθ)anddet(Mj(φ))=rDf(x,y)dxdy=0r10θπ(1+rcosθ)2rsinθrdrdθ=wr2(1+2rcosθ+r2cos2θ)sinθdrdθ=01r2dr.0πsinθdθ+201r3dr0πcosθsinθdθ+01r4dr.0πcos2θsinθdθ=23+14.0+15.(13)(2)=23+215=45
Commented by ajfour last updated on 25/Dec/17
Answered by kaivan.ahmadi last updated on 25/Dec/17
Commented by prakash jain last updated on 25/Dec/17
if you CamScanner app image will be cleaner https://play.google.com/store/apps/details?id=com.intsig.camscanner
Answered by ajfour last updated on 25/Dec/17
x=rcos θ  ,  y=rsin θ , r_(max) =2cos θ_(max)   dxdy=(rdr)dθ  ∫∫_D (x^2 y)(dxdy)  =∫_0 ^(  π/2) ∫_0 ^(2cos θ_(max) ) (r^3 cos^2 θsin θ)(rdrdθ)  =∫_0 ^(  π/2) [∫_0 ^(2cos θ_(max) ) (r^4 dr)]cos^2 θsin θdθ  =∫_0 ^( π/2) (((2cos θ)^5 cos^2 θsin θ)/5)dθ  =((32)/5)×(((cos θ)^8 )/8)∣_(π/2) ^0  =(4/5) .
x=rcosθ,y=rsinθ,rmax=2cosθmaxdxdy=(rdr)dθD(x2y)(dxdy)=0π/202cosθmax(r3cos2θsinθ)(rdrdθ)=0π/2[02cosθmax(r4dr)]cos2θsinθdθ=0π/2(2cosθ)5cos2θsinθ5dθ=325×(cosθ)88π/20=45.

Leave a Reply

Your email address will not be published. Required fields are marked *