Menu Close

find-the-value-of-dt-1-t-t-2-2-




Question Number 33202 by prof Abdo imad last updated on 12/Apr/18
find the value of  ∫_(−∞) ^(+∞)      (dt/((1+t +t^2 )^2 )) .
$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}\:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:. \\ $$
Commented by prof Abdo imad last updated on 13/Apr/18
let put  I  = ∫_(−∞) ^(+∞)    (dt/((1+t+t^2 )^2 ))  we have  I = ∫_(−∞) ^(+∞)     (dt/(((t+(1/2))^2  +(3/4))^2 ))  .changement  t+(1/2) =((√3)/2) tanθ give  I = ∫_(−(π/2)) ^(π/2)       (1/(( (3/4)tan^2 θ +(3/4))^2 )) ((√3)/2)(1+tan^2 θ)dθ  =((√3)/2) .((16)/9)  ∫_(−(π/2)) ^(π/2)       (dθ/(1+tan^2 θ)) = ((16(√3))/9) ∫_0 ^(π/2)  cos^2 θ dθ  = ((16(√3))/9) ∫_0 ^(π/2)  ((1+cos(2θ))/2)dθ  =((8(√3))/9)  ∫_0 ^(π/2) (1 +cos(2θ))dθ  = ((4(√3) π)/9)  +  ((4(√3))/9) [ sin(2θ)]_0 ^(π/2)  = ((4π(√3))/9) +0 ⇒  I = ((4π(√3))/9)  .
$${let}\:{put}\:\:{I}\:\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:{we}\:{have} \\ $$$${I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dt}}{\left(\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }\:\:.{changement} \\ $$$${t}+\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{tan}\theta\:{give} \\ $$$${I}\:=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{\mathrm{1}}{\left(\:\frac{\mathrm{3}}{\mathrm{4}}{tan}^{\mathrm{2}} \theta\:+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:.\frac{\mathrm{16}}{\mathrm{9}}\:\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{d}\theta}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:=\:\frac{\mathrm{16}\sqrt{\mathrm{3}}}{\mathrm{9}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}} \theta\:{d}\theta \\ $$$$=\:\frac{\mathrm{16}\sqrt{\mathrm{3}}}{\mathrm{9}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}{d}\theta \\ $$$$=\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{9}}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}\:+{cos}\left(\mathrm{2}\theta\right)\right){d}\theta \\ $$$$=\:\frac{\mathrm{4}\sqrt{\mathrm{3}}\:\pi}{\mathrm{9}}\:\:+\:\:\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\:\left[\:{sin}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\:\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:+\mathrm{0}\:\Rightarrow \\ $$$${I}\:=\:\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *