Menu Close

find-the-value-of-dt-t-2-2t-2-3-2-




Question Number 40157 by maxmathsup by imad last updated on 16/Jul/18
find the value of  ∫_(−∞) ^(+∞)      (dt/((t^2  −2t +2)^(3/2) ))
$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:−\mathrm{2}{t}\:+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$
Commented by maxmathsup by imad last updated on 16/Jul/18
let I = ∫_(−∞) ^(+∞)    (dt/((t^2  −2t +2)^(3/2) ))  I = ∫_(−∞) ^(+∞)    (dt/({ (t−1)^2  +1}^(3/2) ))  changement t−1=tanx give  I = ∫_(−(π/2)) ^(π/2)     (((1+tan^2 x)dx)/((1+tan^2 x)^(3/2) )) = ∫_(−(π/2)) ^(π/2)    (dx/((1+tan^2 x)^(1/2) )) dx  =∫_(−(π/2)) ^(π/2)  cosxdx  =[sinx]_(−(π/2)) ^(π/2)   =2  I =2
$${let}\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:−\mathrm{2}{t}\:+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left\{\:\left({t}−\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{1}\right\}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{changement}\:{t}−\mathrm{1}={tanx}\:{give} \\ $$$${I}\:=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right){dx}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\:{dx} \\ $$$$=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{cosxdx}\:\:=\left[{sinx}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:=\mathrm{2} \\ $$$${I}\:=\mathrm{2}\: \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jul/18
∫_(−∞) ^(+∞) (dt/({(t−1)^2 +1}^(3/2) ))  let (t−1)=tank  ∫_(−(Π/2)) ^(Π/2) ((sec^2 k dk)/(sec^3 k))  ∫_(−(Π/2)) ^(Π/2) cosk dk  ∣sink∣_(−(Π/2)) ^(Π/2) =2
$$\int_{−\infty} ^{+\infty} \frac{{dt}}{\left\{\left({t}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}\right\}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{let}\:\left({t}−\mathrm{1}\right)={tank} \\ $$$$\int_{−\frac{\Pi}{\mathrm{2}}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{sec}^{\mathrm{2}} {k}\:{dk}}{{sec}^{\mathrm{3}} {k}} \\ $$$$\int_{−\frac{\Pi}{\mathrm{2}}} ^{\frac{\Pi}{\mathrm{2}}} {cosk}\:{dk} \\ $$$$\mid{sink}\mid_{−\frac{\Pi}{\mathrm{2}}} ^{\frac{\Pi}{\mathrm{2}}} =\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *