Menu Close

find-the-value-of-dt-t-2-2t-2-3-2-




Question Number 40157 by maxmathsup by imad last updated on 16/Jul/18
find the value of  ∫_(−∞) ^(+∞)      (dt/((t^2  −2t +2)^(3/2) ))
findthevalueof+dt(t22t+2)32
Commented by maxmathsup by imad last updated on 16/Jul/18
let I = ∫_(−∞) ^(+∞)    (dt/((t^2  −2t +2)^(3/2) ))  I = ∫_(−∞) ^(+∞)    (dt/({ (t−1)^2  +1}^(3/2) ))  changement t−1=tanx give  I = ∫_(−(π/2)) ^(π/2)     (((1+tan^2 x)dx)/((1+tan^2 x)^(3/2) )) = ∫_(−(π/2)) ^(π/2)    (dx/((1+tan^2 x)^(1/2) )) dx  =∫_(−(π/2)) ^(π/2)  cosxdx  =[sinx]_(−(π/2)) ^(π/2)   =2  I =2
letI=+dt(t22t+2)32I=+dt{(t1)2+1}32changementt1=tanxgiveI=π2π2(1+tan2x)dx(1+tan2x)32=π2π2dx(1+tan2x)12dx=π2π2cosxdx=[sinx]π2π2=2I=2
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jul/18
∫_(−∞) ^(+∞) (dt/({(t−1)^2 +1}^(3/2) ))  let (t−1)=tank  ∫_(−(Π/2)) ^(Π/2) ((sec^2 k dk)/(sec^3 k))  ∫_(−(Π/2)) ^(Π/2) cosk dk  ∣sink∣_(−(Π/2)) ^(Π/2) =2
+dt{(t1)2+1}32let(t1)=tankΠ2Π2sec2kdksec3kΠ2Π2coskdksinkΠ2Π2=2

Leave a Reply

Your email address will not be published. Required fields are marked *