Menu Close

find-the-value-of-dx-x-4-x-2-3-




Question Number 56827 by maxmathsup by imad last updated on 24/Mar/19
find the value of ∫_(−∞) ^(+∞)    (dx/(x^4 −x^2 +3))
findthevalueof+dxx4x2+3
Commented by maxmathsup by imad last updated on 25/Mar/19
residus method let ϕ(z)=(1/(z^4 −z^2  +3))  poles of ϕ  z^4 −z^2  +3 =0  ⇒t^2 −t+3=0 with t=z^2   Δ =1−12 =−11 ⇒t_1 =((1+i(√(11)))/2)  and t_2 =((1−i(√(11)))/2) ⇒ϕ(z)=(1/((z^2 −t_1 )(z^2 −t_2 )))  = (1/((z−(√t_1 ))(z+(√t_1 ))(z−(√t_2 ))(z+(√t_2 ))))  we have  ∣t_1 ∣ =(√((1/4)+((11)/4)))=(√3) ⇒t_1 =(√3)((1/(2(√3))) +((i(√(11)))/(2(√3))))=r e^(iθ)  ⇒cosθ =(1/(2(√3))) and sinθ=((√(11))/(2(√3)))  ⇒tanθ =(√(11)) ⇒θ=arctan((√(11))) ⇒t_1 =(√3)e^(iarctan((√(11))))   ⇒ϕ(z) =(1/((z−(√(√3)) e^((i/2)arctan((√(11)))) )(z+(√(√3))e^((i/2)arctan((√(11)))) )(z−(√(√3))e^(−(i/2)arctan((√(11)))) )(z+(√(√3))e^(−(i/2)arctan((√(11)))) )))  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,(√(√3))e^((i/2)arctan((√(11)))) +Res(ϕ,−(√(√3))e^(−(i/2)arctan((√(11)))) )}  Res(ϕ,(√(√3))e^((i/2)arctan((√(11)))) )= (1/(2(√(√3))e^((i/2)arctan((√(11)))) 2i(√3) sin(((arctan((√(11))))/2))2cos(((arctan((√(11))))/2))))  = (e^(−(i/2)arctan((√(11)))) /(4i(√3)(√(√3))sin(arctan((√(11))))))  Res(ϕ,−(√(√3))e^(−(i/2)arctan((√(11)))) ) =(1/(−2(√(√3))e^(−(i/2)arctan((√(11)))) (−(√(√3)))2cos(((arctan((√(11))))/2))2i(√(√3))sin(((arctan((√(11))))/2))))  = (e^((i/2)arctan((√(11)))) /(4i(√3)(√(√3))sin(arctan((√(11)))))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/(4i(√3)(√(√3))sin(arctan((√(11)))))) { e^((i/2)arctan((√(11))))  +e^(−(i/2)arctan((√(11)))) }  =(π/(2(√3)(√(√3))sin(arctan((√(11))))) .2cos(((arctan((√(11))))/2)) ⇒  I =(π/( (√3)(√(√3))))  ((cos(((arctan((√(11))))/2)))/(2sin(((arctan((√(11))))/2))cos(((arctan((√(11))))/2))))  I =(π/(2(√3)(√(√3))sin(((arctan((√(11))))/2)))) .
residusmethodletφ(z)=1z4z2+3polesofφz4z2+3=0t2t+3=0witht=z2Δ=112=11t1=1+i112andt2=1i112φ(z)=1(z2t1)(z2t2)=1(zt1)(z+t1)(zt2)(z+t2)wehavet1=14+114=3t1=3(123+i1123)=reiθcosθ=123andsinθ=1123tanθ=11θ=arctan(11)t1=3eiarctan(11)φ(z)=1(z3ei2arctan(11))(z+3ei2arctan(11))(z3ei2arctan(11))(z+3ei2arctan(11))residustheoremgive+φ(z)dz=2iπ{Res(φ,3ei2arctan(11)+Res(φ,3ei2arctan(11))}Res(φ,3ei2arctan(11))=123ei2arctan(11)2i3sin(arctan(11)2)2cos(arctan(11)2)=ei2arctan(11)4i33sin(arctan(11))Res(φ,3ei2arctan(11))=123ei2arctan(11)(3)2cos(arctan(11)2)2i3sin(arctan(11)2)=ei2arctan(11)4i33sin(arctan(11))+φ(z)dz=2iπ4i33sin(arctan(11)){ei2arctan(11)+ei2arctan(11)}=π233sin(arctan(11).2cos(arctan(11)2)I=π33cos(arctan(11)2)2sin(arctan(11)2)cos(arctan(11)2)I=π233sin(arctan(11)2).
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Mar/19
(1/(x^4 −x^2 +3))  =((1/x^2 )/(x^2 −1+(3/x^2 )))  =(1/(2(√3)))((((2(√3))/x^2 )/(x^2 −1+(3/x^2 ))))  =(1/(2(√3)))(((1+((√3)/x^2 )−(1−((√3)/x^2 )))/(x^2 +(3/x^2 )−1)))  =(1/(2(√3)))(((d(x−((√3)/x)))/((x−((√3)/x))^2 +2(√3) −1)))−(1/(2(√3)))(((d(x+((√3)/x)))/((x+((√3)/x))^2 −2(√3) −1)))  (1/(2(√3)))∫_(−∞) ^(+∞) ((d(x−((√3)/x)))/((x−((√3)/x))^2 +((√(2(√3) −1)) )^2 ))←I_1   (1/(2(√3)))×(1/( (√(2(√3) −1))))×∣tan^(−1) (((x−((√3)/x))/( (√(2(√3) −1)))))∣_(−∞) ^(+∞)   =(1/(2(√3)))×(1/( (√(2(√3) −1))))×{((π/2))−(((−π)/2))}  =(π/(2(√3)))×(1/( (√(2(√3) −1))))←value of I_1   (1/(2(√3)))∫_(−∞) ^(+∞) ((d(x+((√3)/x)))/((x+((√3)/x))^2 −(2(√3) +1))) ←I_2   (1/(2(√3)))×(1/(2((√(2(√3) +1)) )))∣ln(((x+((√3)/x)−(√(2(√3) +1)))/(x+((√3)/x)+(√(2(√3) +1)))))∣_(−∞) ^(+∞)   now ∣ln(((x+(a/x)−b)/(x+(a/x)+b)))∣_(−∞) ^(+∞)   =∣ln(((x^2 +a−bx)/(x^2 +a+bx)))∣_(−∞) ^(+∞)   =∣ln(((1+(a/x^2 )−(b/x))/(1+(a/x^2 )+(b/x))))∣_(−∞) ^(+∞) =0  so I_2 =0  hence answer is  (π/(2(√3)))×(1/( (√(2(√3) −1)))) this is the answer
1x4x2+3=1x2x21+3x2=123(23x2x21+3x2)=123(1+3x2(13x2)x2+3x21)=123(d(x3x)(x3x)2+231)123(d(x+3x)(x+3x)2231)123+d(x3x)(x3x)2+(231)2I1123×1231×tan1(x3x231)+=123×1231×{(π2)(π2)}=π23×1231valueofI1123+d(x+3x)(x+3x)2(23+1)I2123×12(23+1)ln(x+3x23+1x+3x+23+1)+nowln(x+axbx+ax+b)+=∣ln(x2+abxx2+a+bx)+=∣ln(1+ax2bx1+ax2+bx)+=0soI2=0henceanswerisπ23×1231thisistheanswer

Leave a Reply

Your email address will not be published. Required fields are marked *