find-the-value-of-dx-x-4-x-2-3- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 56827 by maxmathsup by imad last updated on 24/Mar/19 findthevalueof∫−∞+∞dxx4−x2+3 Commented by maxmathsup by imad last updated on 25/Mar/19 residusmethodletφ(z)=1z4−z2+3polesofφz4−z2+3=0⇒t2−t+3=0witht=z2Δ=1−12=−11⇒t1=1+i112andt2=1−i112⇒φ(z)=1(z2−t1)(z2−t2)=1(z−t1)(z+t1)(z−t2)(z+t2)wehave∣t1∣=14+114=3⇒t1=3(123+i1123)=reiθ⇒cosθ=123andsinθ=1123⇒tanθ=11⇒θ=arctan(11)⇒t1=3eiarctan(11)⇒φ(z)=1(z−3ei2arctan(11))(z+3ei2arctan(11))(z−3e−i2arctan(11))(z+3e−i2arctan(11))residustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,3ei2arctan(11)+Res(φ,−3e−i2arctan(11))}Res(φ,3ei2arctan(11))=123ei2arctan(11)2i3sin(arctan(11)2)2cos(arctan(11)2)=e−i2arctan(11)4i33sin(arctan(11))Res(φ,−3e−i2arctan(11))=1−23e−i2arctan(11)(−3)2cos(arctan(11)2)2i3sin(arctan(11)2)=ei2arctan(11)4i33sin(arctan(11))⇒∫−∞+∞φ(z)dz=2iπ4i33sin(arctan(11)){ei2arctan(11)+e−i2arctan(11)}=π233sin(arctan(11).2cos(arctan(11)2)⇒I=π33cos(arctan(11)2)2sin(arctan(11)2)cos(arctan(11)2)I=π233sin(arctan(11)2). Answered by tanmay.chaudhury50@gmail.com last updated on 25/Mar/19 1x4−x2+3=1x2x2−1+3x2=123(23x2x2−1+3x2)=123(1+3x2−(1−3x2)x2+3x2−1)=123(d(x−3x)(x−3x)2+23−1)−123(d(x+3x)(x+3x)2−23−1)123∫−∞+∞d(x−3x)(x−3x)2+(23−1)2←I1123×123−1×∣tan−1(x−3x23−1)∣−∞+∞=123×123−1×{(π2)−(−π2)}=π23×123−1←valueofI1123∫−∞+∞d(x+3x)(x+3x)2−(23+1)←I2123×12(23+1)∣ln(x+3x−23+1x+3x+23+1)∣−∞+∞now∣ln(x+ax−bx+ax+b)∣−∞+∞=∣ln(x2+a−bxx2+a+bx)∣−∞+∞=∣ln(1+ax2−bx1+ax2+bx)∣−∞+∞=0soI2=0henceanswerisπ23×123−1thisistheanswer Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-122360Next Next post: let-f-t-0-cos-t-1-x-2-1-x-2-dx-with-t-0-find-a-explicit-form-of-f-t- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.