Menu Close

find-the-value-of-f-a-a-dx-x-2-3-2-R-




Question Number 35832 by abdo mathsup 649 cc last updated on 24/May/18
find the value of  f(λ) = ∫_(−a) ^a    (dx/((λ +_ x^2 )^(3/2) ))  λ∈R .
findthevalueoff(λ)=aadx(λ+x2)32λR.
Commented by abdo.msup.com last updated on 25/May/18
case 1 ifλ>0 let use the changement  x=(√λ) tan(t)  f(λ) = ∫_(−arctan((a/λ))) ^(arctan((a/λ)))    ((√λ)/(λ^(3/2) (1+tan^2 (t))^(3/2) )) (1+tan^2 t)dt  =(1/λ)∫_(−arctan((a/( (√λ))))) ^(arctan( (a/( (√λ)))) )    (1/((1+tan^2 t)^(1/2) ))dt  = (2/λ) ∫_0 ^(arctan((a/( (√λ)))))   cos(t) dt  =(2/λ) [ sin(t)]_0 ^(arctan((a/( (√λ)))))   = (2/λ) sin(arctan((a/( (√λ)))))  but we have sin(arctanx) = (x/( (√(1+x^2 ))))  so sin(arctan((a/( (√λ))))) = (a/( (√λ) (√(1+(a^2 /λ)))))  = (a/( (√(λ +a^2 )))) ⇒f(λ) = ((2a)/(λ(√(λ+a^2 ))))
case1ifλ>0letusethechangementx=λtan(t)f(λ)=arctan(aλ)arctan(aλ)λλ32(1+tan2(t))32(1+tan2t)dt=1λarctan(aλ)arctan(aλ)1(1+tan2t)12dt=2λ0arctan(aλ)cos(t)dt=2λ[sin(t)]0arctan(aλ)=2λsin(arctan(aλ))butwehavesin(arctanx)=x1+x2sosin(arctan(aλ))=aλ1+a2λ=aλ+a2f(λ)=2aλλ+a2
Commented by prof Abdo imad last updated on 25/May/18
case 2 if  λ<0 ⇒ −λ >0 let put α =−λ  f(λ) = ∫_(−a) ^a    (dx/((x^2  −α)^(3/2) ))  .changement x=(√α)ch(t)  give   f(λ) = ∫_(argch( ((−a)/( (√α))))) ^(argch( (a/( (√α)))))      (((√α)  sh(t))/(α^(3/2) ( ch^2 (t)−1)^(3/2) ))dt  = (1/α)∫_(argch(((−a)/( (√α))))) ^(argch( (a/( (√α)))))     ((sh(t))/(sh^3 (t)))dt   = (2/α) ∫_(argch( ((−a)/( (√α))))) ^(argch((a/( (√α)))))      (dt/(ch(2t)−1))  = (2/α) ∫_(ln( −(a/( (√κ)))  +(√( (a^2 /α) −1)))) ^(ln( (a/( (√α))) +(√( (a^2 /α)−1)))        (dt/(((e^(2t)  +e^(−2t) )/2) −1))  = (4/α) ∫_(ln(−(a/( (√α))) +(√( (a^2 /α)−1)))) ^(ln( (a/( (√α))) +(√((a^2 /α)−1))))      (dt/(e^(2t)  +e^(−2t)  −2)) ...  be continued...
case2ifλ<0λ>0letputα=λf(λ)=aadx(x2α)32.changementx=αch(t)givef(λ)=argch(aα)argch(aα)αsh(t)α32(ch2(t)1)32dt=1αargch(aα)argch(aα)sh(t)sh3(t)dt=2αargch(aα)argch(aα)dtch(2t)1=2αln(aκ+a2α1)ln(aα+a2α1dte2t+e2t21=4αln(aα+a2α1)ln(aα+a2α1)dte2t+e2t2becontinued
Commented by prof Abdo imad last updated on 26/May/18
let find K=∫       (dt/(e^(2t)  +e^(−2t)  −2))  chamgement  e^(2t)  =u give  K = ∫  (1/(u +u^(−1)  −2)) (du/(2u))  =(1/2) ∫      (du/(u^2  +1 −2u)) =(1/2)∫   (du/((u−1)^2 ))  = −(1/(2(u−1)))  =((−1)/(2(e^(2t)  −1))) +c so  f(λ) = −(4/(2α)) [  (1/(e^(2t) −1))]_(ln(((−a)/( (√α))) +(√((a^2 /α)−1))) ^(ln( (a/( (√α))) +(√((a^2 /α) −1)))   = ((−2)/α){     (1/(((a/( (√α))) +(√((a^2 /α)−1))))) − (1/((−(a/( (√α)))+(√((a^2 /α) −1)))))  = (2/λ){     (1/(( (a/( (√(−λ)))) +(√(−(a^2 /λ)−1)))))−(1/((((−a)/( (√(−λ))))+(√(−(a^2 /λ)−1)))))  with λ<0 .
letfindK=dte2t+e2t2chamgemente2t=ugiveK=1u+u12du2u=12duu2+12u=12du(u1)2=12(u1)=12(e2t1)+csof(λ)=42α[1e2t1]ln(aα+a2α1ln(aα+a2α1=2α{1(aα+a2α1)1(aα+a2α1)=2λ{1(aλ+a2λ1)1(aλ+a2λ1)withλ<0.
Answered by tanmay.chaudhury50@gmail.com last updated on 24/May/18
x=(√λ) tanθ   dx=(√λ) sec^2 θ dθ  I=∫(((√λ) sec^2 θ dθ)/({λ(1+tan^2 θ)}^(3/2) ))  ∫(1/λ) ×((sec^2 θ)/(sec^3 θ))×(dθ/)  =(1/λ)∫cosθ dθ  =(1/λ)sinθ  now putting the limit  =(1/λ)×∣(x/((λ+x^2 )^(1/2)  ))∣_(−a) ^a   =(1/λ)×((2a)/((λ+a^2 )^(1/2) ))
x=λtanθdx=λsec2θdθI=λsec2θdθ{λ(1+tan2θ)}321λ×sec2θsec3θ×dθ=1λcosθdθ=1λsinθnowputtingthelimit=1λ×x(λ+x2)12aa=1λ×2a(λ+a2)12
Commented by abdo.msup.com last updated on 25/May/18
your answer is correct sir Tanmay  but you must study the case λ<0....
youransweriscorrectsirTanmaybutyoumuststudythecaseλ<0.

Leave a Reply

Your email address will not be published. Required fields are marked *