Menu Close

find-the-value-of-F-x-0-pi-2-ln-1-x-sin-2-t-sin-2-t-dt-knowing-that-1-lt-x-lt-1-




Question Number 27781 by abdo imad last updated on 14/Jan/18
find the value of F(x)=∫_0 ^(π/2)   ((ln(1+x sin^2 t))/(sin^2 t)) dt knowing that  −1<x<1 .
findthevalueofF(x)=0π2ln(1+xsin2t)sin2tdtknowingthat1<x<1.
Commented by abdo imad last updated on 18/Jan/18
after verifying that  F is derivable on ]−1,1[  F^(,′) (x)= ∫_0 ^(π/2)    ((sin^2 t)/(sin^2 t(1+x sin^2 t)))dt  = ∫_0 ^(π/(2 ))      (dt/(1+x sin^2 t))= ∫_0 ^(π/2)     (dt/(1+x ((1−cos(2t))/2)))  = ∫_0 ^(π/2)        ((2dt)/(2 +x −x cos(2t)))  let use the ch. 2t=θ  F^ (x)= ∫_0 ^π         (dθ/(2+x −x cosθ)) then the ch. tan((θ/2))=t give  F^ (x)=  ∫_0 ^(+∝)       (1/(2+x −x ((1−t^2 )/(1+t^2 ))))  ((2dt)/(1+t^2 ))  = ∫_0 ^(+∝)          ((2dt)/((2+x)(1+t^2 ) −x +xt^2 ))  = ∫_0 ^(+∝)            ((2dt)/(2+x +(2+2x)t^2  −x))= ∫_0 ^(+∝)     (dt/(1+(1+x)t^2 ))   ch. u=(√(1+x))t  = ∫_0 ^(+∝)                (du/( (√(1+x))( 1+u^2 ))) = (π/(2(√(1+x))))  ⇒ F(x)= (π/2) ∫_0 ^x   (dt/( (√(1+t))))  +λ           F(x)= π(√(1+x))   +λ  and λ  = F(0)−π =−π so  F(x)= π( (√(1+x))  −1)   .
afterverifyingthatFisderivableon]1,1[F,(x)=0π2sin2tsin2t(1+xsin2t)dt=0π2dt1+xsin2t=0π2dt1+x1cos(2t)2=0π22dt2+xxcos(2t)letusethech.2t=θF(x)=0πdθ2+xxcosθthenthech.tan(θ2)=tgiveF(x)=0+12+xx1t21+t22dt1+t2=0+2dt(2+x)(1+t2)x+xt2=0+2dt2+x+(2+2x)t2x=0+dt1+(1+x)t2ch.u=1+xt=0+du1+x(1+u2)=π21+xF(x)=π20xdt1+t+λF(x)=π1+x+λandλ=F(0)π=πsoF(x)=π(1+x1).

Leave a Reply

Your email address will not be published. Required fields are marked *