Menu Close

find-the-value-of-f-x-0-pi-cosx-1-2sin-2x-dx-




Question Number 34862 by a.i msup by abdo last updated on 12/May/18
find the value of  f(x) = ∫_0 ^π    ((cosx)/(1+2sin(2x)))dx
findthevalueoff(x)=0πcosx1+2sin(2x)dx
Commented by prof Abdo imad last updated on 14/May/18
thank you sir for this remark..i have working  a lot in complexe analysis but i find often  something that we can t  understand and  explain  it s more and more difficult...
thankyousirforthisremark..ihaveworkingalotincomplexeanalysisbutifindoftensomethingthatwecantunderstandandexplainitsmoreandmoredifficult
Commented by prof Abdo imad last updated on 12/May/18
∫_(∣z∣=1) ϕ(z)dz  = ((−4π)/( (√3))){  Im((√z_1 )  + Im((√z_1 ^− ))}  z_1 = ((√3)/2) −(i/2) = e^(−i(π/6))  ⇒ (√z_1 ) = e^(−i(π/(12)))    ⇒  Im((√z_1 )) = −sin((π/(12)))    and  Im((√z_1 ^− ))= sin((π/(12)))   ∫_(∣z∣=1) ϕ(z)dz =0   ⇒ I =0 .
z∣=1φ(z)dz=4π3{Im(z1+Im(z1)}z1=32i2=eiπ6z1=eiπ12Im(z1)=sin(π12)andIm(z1)=sin(π12)z∣=1φ(z)dz=0I=0.
Commented by MJS last updated on 13/May/18
I can′t follow here:  ((2πi)/( (√3)))(z_1 ^(1/2) +z_1 ^(−(1/2)) −z_2 ^(1/2) −z_2 ^(−(1/2)) )=...  because  z_1 =((√3)/2)−(1/2)i            (√z_1 )=(((√6)+(√2))/4)−(((√6)−(√2))/4)i            (1/( (√z_1 )))=(((√6)+(√2))/4)+(((√6)−(√2))/4)i  z_2 =−((√3)/2)−(1/2)i            (√z_2 )=(((√6)−(√2))/4)−(((√6)+(√2))/4)i            (1/( (√z_2 )))=(((√6)−(√2))/4)+(((√6)+(√2))/4)i  so  ((2πi)/( (√3)))(z_1 ^(1/2) +z_1 ^(−(1/2)) −z_2 ^(1/2) −z_2 ^(−(1/2)) )=((2πi)/( (√3)))×(√2)  where′s the bug?
Icantfollowhere:2πi3(z112+z112z212z212)=becausez1=3212iz1=6+24624i1z1=6+24+624iz2=3212iz2=6246+24i1z2=624+6+24iso2πi3(z112+z112z212z212)=2πi3×2wheresthebug?
Commented by abdo mathsup 649 cc last updated on 13/May/18
sir Mjs no nead to use algebric form because  z_(1 ) =((√3)/2) −(i/2) =e^(−i(π/6))     and (√z_1 )=e^(−i(π/(12)))   z_1 ^(−(1/2))  = z_1 ^−^(1/2)    .....
sirMjsnoneadtousealgebricformbecausez1=32i2=eiπ6andz1=eiπ12z112=z121..
Commented by MJS last updated on 14/May/18
z_1 ^(1/2) =conj(z_1 ^(−(1/2)) )=(−z_2 )^(1/2) =conj((−z_2 )^(−(1/2)) )  z_1 =e^(−i(π/6))           z_2 =e^(−i((5π)/6))   (√z_1 )=e^(−i(π/(12)))        (√z_2 )=e^(−i((5π)/(12)))   (1/( (√z_1 )))=e^(i(π/(12)))          (1/( (√z_2 )))=e^(i((5π)/(12)))
z112=conj(z112)=(z2)12=conj((z2)12)z1=eiπ6z2=ei5π6z1=eiπ12z2=ei5π121z1=eiπ121z2=ei5π12
Commented by MJS last updated on 14/May/18
(z_1 ^(1/2)   +z_1 ^(−(1/2))   −z_2 ^(1/2)  −z_2 ^(−(1/2)) )≠(z_1 ^(1/2)  −z_1 ^−^(1/2)     + z_1 ^(−(1/2))   −z_1 ^−^(−(1/2))  )  because z_1 ≠conj(z_2 ) but z_1 =conj(−z_2 )  sorry but I really want to understand how  the residue method works...
(z112+z112z212z212)(z112z121+z112z121)becausez1conj(z2)butz1=conj(z2)sorrybutIreallywanttounderstandhowtheresiduemethodworks
Commented by abdo mathsup 649 cc last updated on 14/May/18
sir Mjs i will delet my method used in this integral  and try another because the consept of residus  is more difficult in some cases....
sirMjsiwilldeletmymethodusedinthisintegralandtryanotherbecausetheconseptofresidusismoredifficultinsomecases.
Commented by MJS last updated on 14/May/18
Sir, I can′t say if your method is right or  wrong, I′m just trying to follow and  hopefully understand what you′re doing.  I believe you′re very much better in these  things than I am, since I had been studying  maths about 25 years ago and I have forgotten  many things... I′ll be truly thankful for any  explanation you give in this or another case
Sir,Icantsayifyourmethodisrightorwrong,Imjusttryingtofollowandhopefullyunderstandwhatyouredoing.IbelieveyoureverymuchbetterinthesethingsthanIam,sinceIhadbeenstudyingmathsabout25yearsagoandIhaveforgottenmanythingsIllbetrulythankfulforanyexplanationyougiveinthisoranothercase
Answered by tanmay.chaudhury50@gmail.com last updated on 12/May/18
let k=tanx   dk=sec^2 xdx  I′=∫((cosx)/(1+4sinxcosx))  =∫((cosx)/(1+4tanx.cos^2 x))dx  =∫((cosx)/(cos^2 x(sec^2 x+4tanx)))dx  =∫((sec^2 x dx)/(secx(1+tan^2 x+4tanx)))  =∫(dk/(((√(1+k^2 )))(1+k^2 +4k)))  contd
letk=tanxdk=sec2xdxI=cosx1+4sinxcosx=cosx1+4tanx.cos2xdx=cosxcos2x(sec2x+4tanx)dx=sec2xdxsecx(1+tan2x+4tanx)=dk(1+k2)(1+k2+4k)contd
Answered by math1967 last updated on 12/May/18
2I=∫_0 ^π ((cosx)/(1+2sin(2x)))dx +∫_0 ^π ((cos(π−x))/(1+2sin(π−2x)))dx  =∫_0 ^π ((cosx)/(1+2sin(2x)))dx −∫_0 ^π ((cosx)/(1+2sin(2x)))dx  =0
2I=π0cosx1+2sin(2x)dx+π0cos(πx)1+2sin(π2x)dx=π0cosx1+2sin(2x)dxπ0cosx1+2sin(2x)dx=0

Leave a Reply

Your email address will not be published. Required fields are marked *