Menu Close

find-the-value-of-f-x-0-pi-ln-x-2-2x-cos-1-d-with-x-fromR-




Question Number 39633 by abdo mathsup 649 cc last updated on 09/Jul/18
find the value of   f(x) = ∫_0 ^π ln(x^2  −2x cosθ +1)dθ  with x fromR.
findthevalueoff(x)=0πln(x22xcosθ+1)dθwithxfromR.
Commented by math khazana by abdo last updated on 09/Jul/18
we have  f^′ (x)= ∫_0 ^π    ((2x−2cosθ)/(x^(2 )  −2xcosθ +1))dθ  =_(θ=2t)    ∫_0 ^(2π)      ((2x−2cos(2t))/(x^2  −2xcos(2t) +1)) 2dt  = 4  ∫_0 ^(2π)    ((x−cos(2t))/(x^2   −2xcos(2t)+1))dt  changement  e^(it) =z give  f^′ (x)=4 ∫_(∣z∣=1)  ((x−((z^2  +z^(−2) )/2))/(x^2  −2x ((z^2  +z^(−2) )/2) +1)) (dz/(iz))  =4 ∫_(∣z∣=1)   ((2x−z^2  −z^(−2) )/(iz(x^2  −xz^2  −xz^(−2) +1)))dz  =4 ∫_(∣z∣=1)  ((2xz^2  −z^4  −1)/(iz(x^2  z^2  −x z^4  −x +z^2 )))dz  =−4i ∫_(∣z∣=1)   ((−z^4  +2xz^2  −1)/(z(−xz^4  +(1+x^2 )z^2  −x)))dz  =−4i ∫_(∣z∣=1)    ((z^4  −2xz^2  +1)/(z{xz^4  −(1+x^2 )z^2  +x}))dz  let ϕ(z) = ((z^4  −2xz^2  +1)/(z{ xz^4  −(1+x^2 )z^2  +x})) .poles of ϕ  roots of  xz^4  −(1+x^2 )z^2  +x   Δ =(1+x^2 )^2  −4x^2  =1+2x^2  +x^4  −4x^2   =1−2x^2  +x^4  =(1−x^2 )^2  ⇒  z^2  =((1+x^2  +∣1−x^2 ∣)/(2x))   and  z^2  =((1+x^2  −∣1−x^2 ∣)/(2x))  (we suppose that x≠0)  case 1  ∣x∣<1 ⇒z^2   =((1+x^2  +1−x^2 )/(2x)) = (1/x)  or z^2  =((1+x^2  −1+x^2 )/(2x)) =x  so if   0<x<1 we get  z =+^−  (1/( (√x)))  and  z =+^−  (√x)   ,0 are poles of ϕ  ϕ(z) =  ((z^4  −2xz^2  +1)/(xz( z−(1/( (√x))))(z+(1/( (√x))))(z−(√x))(z+(√x))))  ∫_(∣z∣=1)  ϕ(z)dz =2iπ { Res(ϕ,0) +Res(ϕ,(√x))  +Res(ϕ,−(√x))}  Res(ϕ,0) = (1/x)  Res(ϕ,(√x)) = ((x^2  −2x^2  +1)/(x(√x)(x−(1/x))2(√x))) =((1−x^2 )/(2x^2 (((x^2  −1)/x))))  = ((−1)/(2x))  Res(ϕ,−(√x)) =((x^2  −2x^2  +1)/(−x(√x)(x−(1/x))(−2(√x))))  =((1−x^2 )/(2x^2 (((x^2  −1)/x)))) =((−1)/(2x)) ⇒  ∫_(∣z∣=1) ϕ(z)dz =2iπ{ (1/x) −(1/(2x)) −(1/(2x))}=0 ⇒  f^′ (x) =0 ⇒ f(x)=c = f(0)=0 and we get the  same result if  −1<x<0  case 2  ∣x∣>1 we have  f(x) = ∫_0 ^π  ln(x^2 (1 −(2/x) cosθ  + (1/x^2 )))dθ  =2π ln∣x∣  + ∫_0 ^π   ln( X^2  −2X cosθ +1)dθ   =2π ln∣x∣ +0  because ∣X∣ = (1/(∣x∣))<1 ⇒  f(x) =2πln∣x∣ if  ∣x∣>1  and f(x)=0 if∣x∣<1 .
wehavef(x)=0π2x2cosθx22xcosθ+1dθ=θ=2t02π2x2cos(2t)x22xcos(2t)+12dt=402πxcos(2t)x22xcos(2t)+1dtchangementeit=zgivef(x)=4z∣=1xz2+z22x22xz2+z22+1dziz=4z∣=12xz2z2iz(x2xz2xz2+1)dz=4z∣=12xz2z41iz(x2z2xz4x+z2)dz=4iz∣=1z4+2xz21z(xz4+(1+x2)z2x)dz=4iz∣=1z42xz2+1z{xz4(1+x2)z2+x}dzletφ(z)=z42xz2+1z{xz4(1+x2)z2+x}.polesofφrootsofxz4(1+x2)z2+xΔ=(1+x2)24x2=1+2x2+x44x2=12x2+x4=(1x2)2z2=1+x2+1x22xandz2=1+x21x22x(wesupposethatx0)case1x∣<1z2=1+x2+1x22x=1xorz2=1+x21+x22x=xsoif0<x<1wegetz=+1xandz=+x,0arepolesofφφ(z)=z42xz2+1xz(z1x)(z+1x)(zx)(z+x)z∣=1φ(z)dz=2iπ{Res(φ,0)+Res(φ,x)+Res(φ,x)}Res(φ,0)=1xRes(φ,x)=x22x2+1xx(x1x)2x=1x22x2(x21x)=12xRes(φ,x)=x22x2+1xx(x1x)(2x)=1x22x2(x21x)=12xz∣=1φ(z)dz=2iπ{1x12x12x}=0f(x)=0f(x)=c=f(0)=0andwegetthesameresultif1<x<0case2x∣>1wehavef(x)=0πln(x2(12xcosθ+1x2))dθ=2πlnx+0πln(X22Xcosθ+1)dθ=2πlnx+0becauseX=1x<1f(x)=2πlnxifx∣>1andf(x)=0ifx∣<1.
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Jul/18
x^2 −2xcosθ+1  (x−cosθ)^2 +sin^2 θ  (x−cosθ+isinθ)(x−cosθ−isinθ)  (x−e^(−iθ) )(x−e^(iθ) )  f(x)=∫_0 ^Π {ln(x−e^(−iθ) )+ln(x−e^(iθ) )}dθ  (dI/dx)=∫_0 ^Π (1/(x−e^(−iθ) ))+(1/(x−e^(iθ) ))  dθ  =∫_0 ^Π (e^(iθ) /(xe^(iθ) −1))dθ+∫_0 ^Π (e^(−iθ) /(xe^(−iθ) −1))dθ  =(1/x)∫_0 ^Π (e^(iθ) /(e^(iθ) −(1/x)))dθ+(1/x)∫_0 ^Π (e^(−iθ) /(e^(−iθ) −(1/x)))dθ  =∣(1/(ix))ln(e^(iθ) −(1/x))+(1/(−ix))ln(e^(−iθ) −(1/x))∣_0 ^Π   =(1/(ix))∣ln(((e^(iθ) −(1/x))/(e^(−iθ) −(1/x))))∣_0 ^Π    e^(iΠ) =cosΠ+isinΠ=−1  (1/(ix)){ln(((−1−(1/x))/(−1−(1/x))))−ln(((1−(1/x))/(1−(1/x))))}=0  (dI/dx)=0  I=constant  pls check my steps...whether any mistake...
x22xcosθ+1(xcosθ)2+sin2θ(xcosθ+isinθ)(xcosθisinθ)(xeiθ)(xeiθ)f(x)=0Π{ln(xeiθ)+ln(xeiθ)}dθdIdx=0Π1xeiθ+1xeiθdθ=0Πeiθxeiθ1dθ+0Πeiθxeiθ1dθ=1x0Πeiθeiθ1xdθ+1x0Πeiθeiθ1xdθ=∣1ixln(eiθ1x)+1ixln(eiθ1x)0Π=1ixln(eiθ1xeiθ1x)0ΠeiΠ=cosΠ+isinΠ=11ix{ln(11x11x)ln(11x11x)}=0dIdx=0I=constantplscheckmystepswhetheranymistake
Commented by maxmathsup by imad last updated on 09/Jul/18
sir Tanmay  the function ln  at  C is not like ln at  R  look  ln(−1)in R  don t exist but  in  C ln(−1)=ln(e^(iπ) )=iπ  so you have commited a error  in the final lines  you must extract  Re (∫) and Im( ∫) to have a correct  answer ...
sirTanmaythefunctionlnatCisnotlikelnatRlookln(1)inRdontexistbutinCln(1)=ln(eiπ)=iπsoyouhavecommitedaerrorinthefinallinesyoumustextractRe()andIm()tohaveacorrectanswer

Leave a Reply

Your email address will not be published. Required fields are marked *