Menu Close

find-the-value-of-h-t-0-1-ln-1-tx-2-with-t-1-2-calculate-0-1-ln-1-x-2-dx-3-calculate-0-1-ln-1-x-2-dx-




Question Number 36435 by prof Abdo imad last updated on 02/Jun/18
find the value of h(t)=∫_0 ^1 ln(1+tx^2 )  with ∣t∣≤1  2) calculate ∫_0 ^1   ln(1+x^2 )dx  3) calculate ∫_0 ^1 ln(1−x^2 )dx
findthevalueofh(t)=01ln(1+tx2)witht∣⩽12)calculate01ln(1+x2)dx3)calculate01ln(1x2)dx
Commented by abdo.msup.com last updated on 03/Jun/18
another method but easy  ∫_0 ^1  ln(1−x^2 )dx = ∫_0 ^1  ln(1−x)dx +  ∫_0 ^1  ln(1+x)dx but  ∫_0 ^1  ln(1−x)dx =_(1−x=t)  −∫_1 ^0  lnt dt  = ∫_0 ^1  ln(t)dt = [tln(t)]_0 ^1  =0  ∫_0 ^1 ln(1+x)dx =_(1+x=t)  ∫_1 ^2  ln(t)dt  =[ tln(t)]_1 ^2   =2ln(2) so  ∫_0 ^1  ln(1−x^2 )dx =2ln(2) .
anothermethodbuteasy01ln(1x2)dx=01ln(1x)dx+01ln(1+x)dxbut01ln(1x)dx=1x=t10lntdt=01ln(t)dt=[tln(t)]01=001ln(1+x)dx=1+x=t12ln(t)dt=[tln(t)]12=2ln(2)so01ln(1x2)dx=2ln(2).
Commented by abdo.msup.com last updated on 03/Jun/18
  1)we have ∣tx^2 ∣≤1 ⇒ln(1+tx^2 )  =ln(1−(−tx^2 )) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)(tx^2 )^n   =Σ_(n=1) ^∞  (((−1)^n )/n) t^(n−1)  x^(2n)   ⇒  h(t) = Σ_(n=1) ^∞   (((−1)^(n−1) t^n )/n) ∫_0 ^1   x^(2n) dx  =Σ_(n=1) ^∞     (((−1)^(n−1)  t^n )/(n(2n+1)))  (1/2)h(t) =Σ_(n=1) ^∞   { (1/(2n))−(1/(2n+1))}(−1)^(n−1)  t^n   =(1/2) Σ_(n=1) ^∞  (((−1)^(n−1) )/n) t^n  − Σ_(n=1) ^∞  (((−1)^(n−1) )/(2n+1)) t^n   but  Σ_(n=1) ^∞  (((−1)^(n−1) )/n) t^n  =ln(1+t)  Σ_(n=1) ^∞    (((−1)^(n−1) )/(2n+1)) t^n   =(1/( (√t))) Σ_(n=1) ^∞  (((−1)^(n−1) )/(2n+1))((√t))^(2n+1)   =(1/( (√t))) w((√t)) with w(x) =Σ_(n=1) ^∞  (((−1)^(n−1) )/(2n+1))x^(2n+1)   w^′ (x) = Σ_(n=1) ^∞  (−1)^(n−1)  x^(2n)   = Σ_(n=0) ^∞   (−1)^n  x^(2n +2) = x^2   (1/(1+x^2 ))  ⇒  w(x) = ∫   (x^2 /(1+x^2 )) dx  +λ  =x   −arctanx +λ  but λ =w(0)=0 ⇒  w(x)=x −arctan(x) and  Σ_(n=1) ^∞   (((−1)^(n−1) )/(2n+1)) t^n  = (1/( (√t)))w((√t))  =(1/( (√t))){ (√t) −arctan((√t)) so  ((h(t))/2) = (1/2)ln(1+t) −1  +((arctan((√t)))/( (√t))) ⇒  h(t) =ln(1+t)  +((2arctan((√t)))/( (√t))) −2
1)wehavetx2∣⩽1ln(1+tx2)=ln(1(tx2))=n=1(1)n1n(tx2)n=n=1(1)nntn1x2nh(t)=n=1(1)n1tnn01x2ndx=n=1(1)n1tnn(2n+1)12h(t)=n=1{12n12n+1}(1)n1tn=12n=1(1)n1ntnn=1(1)n12n+1tnbutn=1(1)n1ntn=ln(1+t)n=1(1)n12n+1tn=1tn=1(1)n12n+1(t)2n+1=1tw(t)withw(x)=n=1(1)n12n+1x2n+1w(x)=n=1(1)n1x2n=n=0(1)nx2n+2=x211+x2w(x)=x21+x2dx+λ=xarctanx+λbutλ=w(0)=0w(x)=xarctan(x)andn=1(1)n12n+1tn=1tw(t)=1t{tarctan(t)soh(t)2=12ln(1+t)1+arctan(t)th(t)=ln(1+t)+2arctan(t)t2
Commented by abdo.msup.com last updated on 03/Jun/18
we have proved that   ∫_0 ^1 ln(1+tx^2 )dx = ln(1+t) +((2arctan((√t)))/( (√t))) −2  for t =1 we get  ∫_0 ^1   ln(1+x^2 )dx =ln(2) + 2 (π/4) −2  =ln(2) +(π/2) −2 .
wehaveprovedthat01ln(1+tx2)dx=ln(1+t)+2arctan(t)t2fort=1weget01ln(1+x2)dx=ln(2)+2π42=ln(2)+π22.
Commented by abdo.msup.com last updated on 03/Jun/18
3) we have ln^′ (1−u) = ((−1)/(1−u))  =−Σ_(n=0) ^∞  u^n  ⇒ ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) +c  =− Σ_(n=1) ^∞   (u^n /n) =Σ_(n=1) ^∞   (u^(n−1) /n)    (c=0)⇒  ln(1−x^2 )  = Σ_(n=1) ^∞    (x^(2n−2) /n) ⇒  ∫_0 ^1  ln(1−x^2 )dx = Σ_(n=1) ^∞   (1/(n(2n−1))) =A  (A/2) = Σ_(n=1) ^∞    (1/(2n(2n−1)))  =Σ_(n=1) ^∞ (  (1/(2n−1)) −(1/(2n)))=  lim_(n→+∞)  Σ_(k=1) ^n   ((1/(2k−1)) −(1/(2k)))  but  Σ_(k=1) ^n  (1/(2k−1)) = 1 +(1/3) +(1/5) +... +(1/(2n−1))  =1 +(1/2) +(1/3) +(1/4) +......+(1/(2n−1)) +(1/(2n))  −(1/2) −(1/4) −....−(1/(2n)) = H_(2n)  −(1/2) H_n   Σ_(k=1) ^n  (1/(2k−1)) −(1/2) Σ_(k=1) ^∞  (1/k)  = H_(2n)  −(1/2) H_n  −(1/2) H_n  = H_(2n)  −H_n   =ln(2n)+γ +o((1/n)) −ln(n)−δ  −o((1/n))  =ln(((2n)/n)) +o((1/n)) →ln(2) (n→+∞) so  so  ∫_0 ^1 ln(1−x^2 )dx  =2ln2 .
3)wehaveln(1u)=11u=n=0unln(1u)=n=0un+1n+1+c=n=1unn=n=1un1n(c=0)ln(1x2)=n=1x2n2n01ln(1x2)dx=n=11n(2n1)=AA2=n=112n(2n1)=n=1(12n112n)=limn+k=1n(12k112k)butk=1n12k1=1+13+15++12n1=1+12+13+14++12n1+12n1214.12n=H2n12Hnk=1n12k112k=11k=H2n12Hn12Hn=H2nHn=ln(2n)+γ+o(1n)ln(n)δo(1n)=ln(2nn)+o(1n)ln(2)(n+)soso01ln(1x2)dx=2ln2.

Leave a Reply

Your email address will not be published. Required fields are marked *