Menu Close

find-the-value-of-I-0-1-arctan-2x-1-4x-2-dx-




Question Number 39024 by maxmathsup by imad last updated on 01/Jul/18
find the value of I = ∫_0 ^1   ((arctan(2x))/( (√(1+4x^2 )))) dx
findthevalueofI=01arctan(2x)1+4x2dx
Commented by math khazana by abdo last updated on 04/Jul/18
the Q is find  ∫_0 ^1    ((arctan(2x))/(1+4x^2 ))dx .
theQisfind01arctan(2x)1+4x2dx.
Commented by abdo mathsup 649 cc last updated on 05/Jul/18
let I  = ∫_0 ^1   ((arctan(2x))/(1+4x^2 ))  let integrate by parts  u^′  =(1/(1+4x^2 ))  and v= arctan(2x) ⇒  I =[ (1/2)(arctan(2x))^2 ]_0 ^1  −∫_0 ^1   (1/2)arctan(2x) (2/(1+4x^2 ))dx  =(1/2) (arctan(2))^2   −I ⇒  2I = (1/2){arctan(2)}^2  ⇒I = (1/4){arctan(2)}^2
letI=01arctan(2x)1+4x2letintegratebypartsu=11+4x2andv=arctan(2x)I=[12(arctan(2x))2]010112arctan(2x)21+4x2dx=12(arctan(2))2I2I=12{arctan(2)}2I=14{arctan(2)}2

Leave a Reply

Your email address will not be published. Required fields are marked *