Menu Close

find-the-value-of-I-0-1-dx-x-1-2-x-2-2x-2-




Question Number 30769 by abdo imad last updated on 25/Feb/18
find the value of I= ∫_0 ^1      (dx/((x+1)^2 (√(x^2  +2x +2)))) .
findthevalueofI=01dx(x+1)2x2+2x+2.
Commented by abdo imad last updated on 27/Feb/18
we have x^2  +2x+2=(x+1)^2  +1 the ch=x+1=t give  I= ∫_1 ^2     (dt/(t^2 (√(1+t^2 )))) the we can use the ch.t=tanθ ⇒  I= ∫_(π/4) ^(artan2)  ((1+tan^2 θ)/(tan^2 θ(√(1+tan^2 θ))))dθ = ∫_(π/4) ^(arctan2)    ((cos^2 θ)/(sin^2 θ)) (1/(cosθ))dθ  = ∫_(π/4) ^(arctan2)     ((cosθ)/(sin^2 θ)) dθ  =[−(1/(sinθ))]_(π/4) ^(arctan2)   =(√2) − (1/(sin(arctan2))) but we have the formula  sin(arctanx)= (x/( (√(1+x^2 ))))( for proof put x=tanθ)⇒  sin(arctan2)= (2/( (√5)))  ⇒ I=(√2)  −(2/( (√5))) .
wehavex2+2x+2=(x+1)2+1thech=x+1=tgiveI=12dtt21+t2thewecanusethech.t=tanθI=π4artan21+tan2θtan2θ1+tan2θdθ=π4arctan2cos2θsin2θ1cosθdθ=π4arctan2cosθsin2θdθ=[1sinθ]π4arctan2=21sin(arctan2)butwehavetheformulasin(arctanx)=x1+x2(forproofputx=tanθ)sin(arctan2)=25I=225.

Leave a Reply

Your email address will not be published. Required fields are marked *