find-the-value-of-I-0-1-dx-x-1-2-x-2-2x-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 30769 by abdo imad last updated on 25/Feb/18 findthevalueofI=∫01dx(x+1)2x2+2x+2. Commented by abdo imad last updated on 27/Feb/18 wehavex2+2x+2=(x+1)2+1thech=x+1=tgiveI=∫12dtt21+t2thewecanusethech.t=tanθ⇒I=∫π4artan21+tan2θtan2θ1+tan2θdθ=∫π4arctan2cos2θsin2θ1cosθdθ=∫π4arctan2cosθsin2θdθ=[−1sinθ]π4arctan2=2−1sin(arctan2)butwehavetheformulasin(arctanx)=x1+x2(forproofputx=tanθ)⇒sin(arctan2)=25⇒I=2−25. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-arctan-2x-1-x-2-dx-Next Next post: Given-z-xy-4y-2-x-2-4y-2-x-y-0-find-minimum-and-maximum-value-of-z- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.