Menu Close

find-the-value-of-I-0-1-ln-t-ln-1-t-t-dt-




Question Number 35628 by abdo mathsup 649 cc last updated on 21/May/18
find the value of  I  =∫_0 ^1 ((ln(t)ln(1−t))/t)dt
$${find}\:{the}\:{value}\:{of}\:\:{I}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right){ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$
Commented by abdo mathsup 649 cc last updated on 24/May/18
we have ln^′ (1−t) = ((−1)/(1−t)) =−Σ_(n=0) ^∞  t^n   for ∣t∣<1  ⇒ ln(1−t) =−Σ_(n=0) ^∞   (t^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (t^n /n) ⇒  ((ln(1−t))/t) = −Σ_(n=1) ^∞   (t^(n−1) /n) ⇒  I  = − ∫_0 ^1   {Σ_(n=1) ^∞  (t^(n−1) /n)}ln(t)dt  =−Σ_(n=1) ^∞   (1/n)∫_0 ^1   t^(n−1) ln(t)dt  by parts  A_n  = ∫_0 ^1   t^(n−1)  ln(t)dt =[(1/n)t^n ln(t)]_0 ^1  −∫_0 ^1  (1/n)t^n  (dt/t)  = −(1/n) ∫_0 ^1   t^(n−1) dt = −(1/n^2 ) ⇒ I = Σ_(n=1) ^∞  (1/n^3 )  I =ξ(3)  the approximate value of ξ(3) is known.
$${we}\:{have}\:{ln}^{'} \left(\mathrm{1}−{t}\right)\:=\:\frac{−\mathrm{1}}{\mathrm{1}−{t}}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{t}^{{n}} \:\:{for}\:\mid{t}\mid<\mathrm{1} \\ $$$$\Rightarrow\:{ln}\left(\mathrm{1}−{t}\right)\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{t}^{{n}} }{{n}}\:\Rightarrow \\ $$$$\frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}\:=\:−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{t}^{{n}−\mathrm{1}} }{{n}}\:\Rightarrow \\ $$$${I}\:\:=\:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\left\{\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{t}^{{n}−\mathrm{1}} }{{n}}\right\}{ln}\left({t}\right){dt} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{n}−\mathrm{1}} {ln}\left({t}\right){dt}\:\:{by}\:{parts} \\ $$$${A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{n}−\mathrm{1}} \:{ln}\left({t}\right){dt}\:=\left[\frac{\mathrm{1}}{{n}}{t}^{{n}} {ln}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{n}}{t}^{{n}} \:\frac{{dt}}{{t}} \\ $$$$=\:−\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{n}−\mathrm{1}} {dt}\:=\:−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\Rightarrow\:{I}\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$$${I}\:=\xi\left(\mathrm{3}\right)\:\:{the}\:{approximate}\:{value}\:{of}\:\xi\left(\mathrm{3}\right)\:{is}\:{known}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *