find-the-value-of-I-0-1-t-1-lnt-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 27183 by abdo imad last updated on 02/Jan/18 findthevalueofI=∫01t−1lntdt. Answered by prakash jain last updated on 03/Jan/18 F(x)=∫01tx(t−1)lntdtdFdx=∫01∂∂x(tx(t−1)lnt)dtdFdx=∫01tx(t−1)lntlntdtdFdx=∫01tx+1−txdt=[tx+2x+2−tx+1x+1]01=1x+2−1x+1F(x)=ln∣x+2x+1∣+CF(−∞)=0⇒C=0F(x)=ln∣x+2x+1∣I=F(0)=ln2 Commented by prakash jain last updated on 03/Jan/18 pleasecommentifmistakes.thanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-158252Next Next post: find-D-x-y-2-e-x-2-y-2-dxdy-with-D-x-y-R-2-0-lt-x-lt-1-and-0-lt-y-lt-1-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.