Menu Close

find-the-value-of-I-0-1-t-1-lnt-dt-




Question Number 27183 by abdo imad last updated on 02/Jan/18
find the value of I= ∫_0 ^1 ((t−1)/(lnt))dt .
findthevalueofI=01t1lntdt.
Answered by prakash jain last updated on 03/Jan/18
F(x)=∫_0 ^1 ((t^x (t−1))/(ln t))dt  (dF/dx)=∫_0 ^1 (∂/∂x) (((t^x (t−1))/(ln t)))dt  (dF/dx)=∫_0 ^1 ((t^x (t−1))/(ln t))ln t dt  (dF/dx)=∫_0 ^1 t^(x+1) −t^x  dt=[(t^(x+2) /(x+2))−(t^(x+1) /(x+1))]_0 ^1   =(1/(x+2))−(1/(x+1))  F(x)=ln ∣((x+2)/(x+1))∣+C  F(−∞)=0⇒C=0  F(x)=ln ∣((x+2)/(x+1))∣  I=F(0)=ln 2
F(x)=01tx(t1)lntdtdFdx=01x(tx(t1)lnt)dtdFdx=01tx(t1)lntlntdtdFdx=01tx+1txdt=[tx+2x+2tx+1x+1]01=1x+21x+1F(x)=lnx+2x+1+CF()=0C=0F(x)=lnx+2x+1I=F(0)=ln2
Commented by prakash jain last updated on 03/Jan/18
please comment if mistakes. thanks
pleasecommentifmistakes.thanks

Leave a Reply

Your email address will not be published. Required fields are marked *