Menu Close

Find-the-value-of-i-0-j-0-k-0-1-3-i-3-j-3-k-case-1-i-j-k-case-2-i-lt-j-lt-k-




Question Number 31743 by rahul 19 last updated on 13/Mar/18
 Find the value of : Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞  (1/(3^i 3^j 3^k )).  case 1: i≠j≠k.  case 2: i<j<k.
Findthevalueof:i=0j=0k=013i3j3k.case1:ijk.case2:i<j<k.
Answered by mrW2 last updated on 13/Mar/18
Σ_(k=0) ^∞ (1/3^k )=1+(1/3)+(1/3^2 )+....=(1/(1−(1/3)))=(3/2)  Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞  (1/(3^i 3^j 3^k ))  =Σ_(i=0) ^∞ Σ_(j=0) ^∞ {(1/(3^i 3^j ))(Σ_(k=0) ^∞  (1/3^k ))}  =(3/2)Σ_(i=0) ^∞ Σ_(j=0) ^∞ (1/(3^i 3^j ))  =(3/2)Σ_(i=0) ^∞ {(1/3^i )(Σ_(j=0) ^∞ (1/3^j ))}  =(3/2)×(3/2)Σ_(i=0) ^∞ (1/3^i )  =(3/2)×(3/2)×(3/2)  =((27)/8)
k=013k=1+13+132+.=1113=32i=0j=0k=013i3j3k=i=0j=0{13i3j(k=013k)}=32i=0j=013i3j=32i=0{13i(j=013j)}=32×32i=013i=32×32×32=278
Commented by mrW2 last updated on 14/Mar/18
Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞  (1/(3^i 3^j 3^k ))=((27)/8)  this is correct.  if you need Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞ _(i≠j≠k)  (1/(3^i 3^j 3^k )) or  Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞ _(i>j>k)  (1/(3^i 3^j 3^k )) then the result is different.
i=0j=0k=013i3j3k=278thisiscorrect.ifyouneedi=0j=0k=0ijk13i3j3kori=0j=0k=0i>j>k13i3j3kthentheresultisdifferent.
Commented by rahul 19 last updated on 14/Mar/18
But what is the difference when  i≠j≠k and i<j<k are present in ques.  (original q.) and when that is not mention  in the ques. (the way u solved).
Butwhatisthedifferencewhenijkandi<j<karepresentinques.(originalq.)andwhenthatisnotmentionintheques.(thewayusolved).
Commented by mrW2 last updated on 14/Mar/18
look at an example:  Σ_(i=1) ^3 Σ_(j=1) ^3 a^i b^j =a^1 (b^1 +b^2 +b^3 )+a^2 (b^1 +b^2 +b^3 )+a^3 (b^1 +b^2 +b^3 )=(a^1 +a^2 +a^3 )(b^1 +b^2 +b^3 )  (i and j are independent)    Σ_(i=1) ^3 Σ_(j=1) ^3 _(i≠j) a^i b^j =a^1 (b^2 +b^3 )+a^2 (b^1 +b^3 )+a^3 (b^1 +b^2 )  (i and j are dependent)    Σ_(i=1) ^3 Σ_(j=1) ^3 _(i<j) a^i b^j =a^1 (b^2 +b^3 )+a^2 b^3   (i and j are dependent)
lookatanexample:3i=13j=1aibj=a1(b1+b2+b3)+a2(b1+b2+b3)+a3(b1+b2+b3)=(a1+a2+a3)(b1+b2+b3)(iandjareindependent)3i=13j=1ijaibj=a1(b2+b3)+a2(b1+b3)+a3(b1+b2)(iandjaredependent)3i=13j=1i<jaibj=a1(b2+b3)+a2b3(iandjaredependent)
Commented by rahul 19 last updated on 14/Mar/18
ok sir, now understood when its in  2 variables (i,j).  pls also show similar example for  3 variable (i,j,k) ?
oksir,nowunderstoodwhenitsin2variables(i,j).plsalsoshowsimilarexamplefor3variable(i,j,k)?
Commented by abdo imad last updated on 14/Mar/18
there is a dfference between  Σ_(i j) a_i bj and  Σ_(i,j andi≠j) a_i a_j   and the type of this triple sum is difficut to treat  and if you give interest you must take a look to  sommables family ....
thereisadfferencebetweenijaibjandi,jandijaiajandthetypeofthistriplesumisdifficuttotreatandifyougiveinterestyoumusttakealooktosommablesfamily.

Leave a Reply

Your email address will not be published. Required fields are marked *