find-the-value-of-I-0-pi-dx-2-cosx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 35729 by abdo mathsup 649 cc last updated on 22/May/18 findthevalueofI=∫0πdx2−cosx Commented by abdo mathsup 649 cc last updated on 23/May/18 changementx=2tgiveI=∫02π2dt2−cos(2t)thenchangementeit=zgiveI=∫∣z∣=122−z2+z−22dziz=∫∣z∣=14dziz(4−z2−z−2)∫∣z∣=1−4izdz4z−z3−z−1=∫∣z∣=1−4izdz4z2−z4−1=∫∣z∣=14izdzz4−4z2+1.letconsiderφ(z)=4izz4−4z2+1.polesofφ?letfindtherootsofz4−4z2+1=0⇒t2−4t+1=0(t=z2)Δ′=4−1=3⇒t1=2+3andt2=2−3⇒φ(z)=4iz(z2−(2+3))(z2−(2−3))=4iz(z−2+3)(z+2+3)(z−2−3)(z+2−3)thepolesofφare+−2+3and+−2−3∫∣z∣=1φ(z)dz=2iπRes(φ,2−3)Res(φ,2−3)=4i2−322−3(2−3−2−3)=4i−43=−i3∫∣z∣=1φ(z)dz=2iπ−i3=2π3⇒I=2π3. Answered by MJS last updated on 23/May/18 ∫π0dx2−cos(x)=t=tan(x2)→dx=2dt1+t2;cos(x)=1−t21+t2=∫∞02dt3t2+1=u=3t→dt=33du=233∫∞0duu2+1=[233arctan(u)]0∞==[233arctan(3t)]0∞==[233arctan(3tan(x2))]0π=2π33 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-x-x-1-dx-Next Next post: Calculate-lim-x-0-x-x-sin-x-tan-2-x-1-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.