Menu Close

find-the-value-of-I-0-pi-dx-2-cosx-




Question Number 35729 by abdo mathsup 649 cc last updated on 22/May/18
find the value of   I =∫_0 ^π     (dx/(2−cosx))
findthevalueofI=0πdx2cosx
Commented by abdo mathsup 649 cc last updated on 23/May/18
changement x=2t give   I = ∫_0 ^(2π)     ((2dt)/(2 −cos(2t)))  then changement e^(it)  =z give  I  = ∫_(∣z∣=1)     (2/(2− ((z^2  +z^(−2) )/2))) (dz/(iz))   =∫_(∣z∣=1)    ((4dz)/(iz( 4 −z^2  −z^(−2) )))   ∫_(∣z∣ =1)        ((−4iz dz)/(4z −z^3  −z^(−1) )) = ∫_(∣z∣=1)    ((−4izdz)/(4z^2  −z^4  −1))   = ∫_(∣z∣ =1)     ((4i zdz)/(z^4  −4z^2  +1)) .let consider  ϕ(z) = ((4iz)/(z^4  −4z^2  +1)) .poles of ϕ? let find the roots  of  z^4  −4z^2  +1 =0 ⇒ t^2  −4t +1 =0  ( t=z^2 )  Δ^′  = 4−1 =3 ⇒ t_1 = 2+(√3)   and t_2 = 2−(√( 3))  ⇒  ϕ(z) = ((4iz)/((z^2 −(2+(√3)))(z^2  −(2−(√3)))))  =  ((4iz)/((z −(√(2+(√3))) )(z +(√(2+(√3))( z−(√(2−(√3))))))(z+(√(2−(√3))))))  the poles of ϕ are  +^− (√(2+(√3)))   and +^− (√(2−(√3)))  ∫_(∣z∣=1)    ϕ(z)dz =2iπ Res(ϕ, (√(2−(√3))) )  Res(ϕ,(√(2−(√3))) ) =  ((4i(√(2−(√3))))/(2(√(2−(√3)))(2−(√3) −2−(√3))))  = ((4i)/(−4(√3))) =((−i)/( (√3)))  ∫_(∣z∣=1)    ϕ(z)dz =  2iπ  ((−i)/( (√3))) =  ((2π)/( (√3)))  ⇒  I  = ((2π)/( (√3)))  .
changementx=2tgiveI=02π2dt2cos(2t)thenchangementeit=zgiveI=z∣=122z2+z22dziz=z∣=14dziz(4z2z2)z=14izdz4zz3z1=z∣=14izdz4z2z41=z=14izdzz44z2+1.letconsiderφ(z)=4izz44z2+1.polesofφ?letfindtherootsofz44z2+1=0t24t+1=0(t=z2)Δ=41=3t1=2+3andt2=23φ(z)=4iz(z2(2+3))(z2(23))=4iz(z2+3)(z+2+3)(z23)(z+23)thepolesofφare+2+3and+23z∣=1φ(z)dz=2iπRes(φ,23)Res(φ,23)=4i23223(2323)=4i43=i3z∣=1φ(z)dz=2iπi3=2π3I=2π3.
Answered by MJS last updated on 23/May/18
∫_0 ^π (dx/(2−cos(x) ))=            t=tan((x/2)) → dx=((2dt)/(1+t^2 )); cos(x)=((1−t^2 )/(1+t^2 ))  =∫_0 ^∞ ((2dt)/(3t^2 +1))=            u=(√3)t → dt=((√3)/3)du  =((2(√3))/3)∫_0 ^∞ (du/(u^2 +1))=[((2(√3))/3)arctan(u)]_0 ^∞ =  =[((2(√3))/3)arctan((√3)t)]_0 ^∞ =  =[((2(√3))/3)arctan((√3)tan((x/2)))]_0 ^π =((2π(√3))/3)
π0dx2cos(x)=t=tan(x2)dx=2dt1+t2;cos(x)=1t21+t2=02dt3t2+1=u=3tdt=33du=2330duu2+1=[233arctan(u)]0==[233arctan(3t)]0==[233arctan(3tan(x2))]0π=2π33

Leave a Reply

Your email address will not be published. Required fields are marked *