Menu Close

find-the-value-of-i-1-999-cos-ia-where-a-2pi-1999-




Question Number 119421 by bemath last updated on 24/Oct/20
find the value of Π_(i=1) ^(999)  cos (ia) ; where a = ((2π)/(1999))
findthevalueof999i=1cos(ia);wherea=2π1999
Commented by MJS_new last updated on 24/Oct/20
study P_n =Π_(j=1) ^n cos ((2πj)/(2n+1)) to find the answer  it′s easier than it seems
studyPn=nj=1cos2πj2n+1tofindtheansweritseasierthanitseems
Answered by benjo_mathlover last updated on 24/Oct/20
Let B denote the desired product, and let  J = sin a sin 2a sin 3a... sin 999a  consider that   2^(999)  BJ = (2sin a cos a)(2sin 2acos 2a)(2sin 3acos 3a)...(2sin 999a cos 999a)                    = sin 2a sin 4a sin 6a ... sin 1998a         = (sin 2asin 4asin 6a...sin 998a)(−sin (2π−1000a)).(−sin (2π−10002a))...(−sin (2π−1998a))         = sin 2asin 4asin 6a...sin 998asin 999asin 997a...sin a = J  since J ≠ 0 , hence the desired product  is B = (1/2^(999) )
LetBdenotethedesiredproduct,andletJ=sinasin2asin3asin999aconsiderthat2999BJ=(2sinacosa)(2sin2acos2a)(2sin3acos3a)(2sin999acos999a)=sin2asin4asin6asin1998a=(sin2asin4asin6asin998a)(sin(2π1000a)).(sin(2π10002a))(sin(2π1998a))=sin2asin4asin6asin998asin999asin997asina=JsinceJ0,hencethedesiredproductisB=12999
Answered by mindispower last updated on 24/Oct/20
Π_(i=1) ^m cos(i((2π)/(2m+1)))  Z^(2m+1) −1=0⇒Z=e^((2ikπ)/(2m+1)) ,k∈[0,2m]  z^(2m+1) −1=Π_(k≤2m) (z−e^((2ikπ)/(2m+1)) )  z=−1⇒  −2=Π_(k=0) ^(2m) (−1−e^((2ikπ)/(2m+1)) )=−1e^(i(π/(2m+1)).((2m(2m+1))/2)) .Π_(k≤2m) (2cos(((kπ)/(2m+1)))  =(−1)^(m+1) 2^(2m+1) Π_(k≤2m) cos(((kπ)/(2m+1)))  Π_(k≤2m) cos(((kπ)/(2m+1)))=Π_(k≤m) cos(((kπ)/(2m+1))).Π_(m<k≤2m) (−cos(π−((kπ)/(2m+1))))  put k→2m+1−k in2nd ⇒  =Π_(1≤k≤m) cos(((kπ)/(2m+1))).(−1)^m .Π_(k≤m) cos(((π(2m+1)−(2m+1−k)π)/(2m+1))  =(−1)^m (Π_(k=1) ^m cos(((kπ)/(2m+1))))^2   ⇒−2=(−1)^(m+1) .2^(2m+1) .(−1)^m .(Π_(k≤m) cos(((kπ)/(2m+1))))^2   ⇒(1/2^(2m) )=Π_(k≤m) cos^2 (((kπ)/(2m+1)))  since0<((kπ)/(2m+1))<((mπ)/(2m))=(π/2)  ⇒Π_(k≤m) cos(((kπ)/(2m+1)))=(1/2^m )  put m=999⇒Π_(k≤999) cos(((kπ)/(1999)))=(1/2^(999) )
mi=1cos(i2π2m+1)Z2m+11=0Z=e2ikπ2m+1,k[0,2m]z2m+11=k2m(ze2ikπ2m+1)z=12=2mk=0(1e2ikπ2m+1)=1eiπ2m+1.2m(2m+1)2.k2m(2cos(kπ2m+1)=(1)m+122m+1k2mcos(kπ2m+1)k2mcos(kπ2m+1)=kmcos(kπ2m+1).m<k2m(cos(πkπ2m+1))putk2m+1kin2nd=1kmcos(kπ2m+1).(1)m.kmcos(π(2m+1)(2m+1k)π2m+1=(1)m(mk=1cos(kπ2m+1))22=(1)m+1.22m+1.(1)m.(kmcos(kπ2m+1))2122m=kmcos2(kπ2m+1)since0<kπ2m+1<mπ2m=π2kmcos(kπ2m+1)=12mputm=999k999cos(kπ1999)=12999

Leave a Reply

Your email address will not be published. Required fields are marked *