Menu Close

find-the-value-of-I-a-D-a-e-x-2-y-2-2-dxdy-with-D-a-x-y-R-2-x-2-y-2-a-2-




Question Number 27182 by abdo imad last updated on 02/Jan/18
 find the value of I_a = ∫∫_D_a  e^(−((x^2  +y^2 )/2)) dxdy  with  D_a  ={(x,y)∈R^2  / x^2 +y^2 ≤ a^2   }
findthevalueofIa=Daex2+y22dxdywithDa={(x,y)R2/x2+y2a2}
Commented by abdo imad last updated on 05/Jan/18
we use the polar coordinates and the diffeomorphismeψ  (r,θ)−>ψ(r,θ) =(x,y)=(rcosθ,rsinθ)  I_(a ) =∫∫_(o≤r≤a) e^(−(r^2 /2))  rdr dθ  = ∫_0 ^(2π)   ( ∫_0 ^a   r e^(−(r^2 /2))  dr )dθ= 2π ∫_0 ^a  r e^(−(r^2 /2)) dr  = 2π[  − e^(−(r^2 /2))      ]_0 ^a =2π(1− e^(−(a^2 /2))    )
weusethepolarcoordinatesandthediffeomorphismeψ(r,θ)>ψ(r,θ)=(x,y)=(rcosθ,rsinθ)Ia=oraer22rdrdθ=02π(0arer22dr)dθ=2π0arer22dr=2π[er22]0a=2π(1ea22)

Leave a Reply

Your email address will not be published. Required fields are marked *