Menu Close

Find-the-value-of-i-i-




Question Number 27603 by lizan 123 last updated on 10/Jan/18
Find  the value of   i^i   ?
$${Find}\:\:{the}\:{value}\:{of}\:\:\:{i}^{{i}} \:\:? \\ $$$$ \\ $$$$ \\ $$
Commented by abdo imad last updated on 10/Jan/18
if you mean i/i^2 =−1 we have i^i = e^(iln(i))   and ln(i) mean the pricipal determination of complex  logarithme but  i=e^(i(π/2)) ⇒ln(i) = ((iπ)/2) ⇒e^(iln(i)) = e^(−(π/2))   i^i   =e^(−(π/2))      .
$${if}\:{you}\:{mean}\:{i}/{i}^{\mathrm{2}} =−\mathrm{1}\:{we}\:{have}\:{i}^{{i}} =\:{e}^{{iln}\left({i}\right)} \\ $$$${and}\:{ln}\left({i}\right)\:{mean}\:{the}\:{pricipal}\:{determination}\:{of}\:{complex} \\ $$$${logarithme}\:{but}\:\:{i}={e}^{{i}\frac{\pi}{\mathrm{2}}} \Rightarrow{ln}\left({i}\right)\:=\:\frac{{i}\pi}{\mathrm{2}}\:\Rightarrow{e}^{{iln}\left({i}\right)} =\:{e}^{−\frac{\pi}{\mathrm{2}}} \\ $$$${i}^{{i}} \:\:={e}^{−\frac{\pi}{\mathrm{2}}} \:\:\:\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *