Menu Close

find-the-value-of-I-n-0-1-x-n-1-x-dx-




Question Number 36410 by abdo.msup.com last updated on 01/Jun/18
find the value of I_n = ∫_0 ^1  x^n (√(1−x))dx
$${find}\:{the}\:{value}\:{of}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}−{x}}{dx} \\ $$
Commented by abdo.msup.com last updated on 04/Jun/18
chsngement (√(1−x))=t give  1−x=t^2   ⇒x=1−t^2   and   I_n = ∫_0 ^1  (1−t^2 )^n  t (2t)dt  =2  ∫_0 ^1 t^2  ( Σ_(k=0) ^n (−t^2 )^k )dt  =2Σ_(k=0) ^n  (−1)^k  ∫_0 ^1  t^(2k+2)  dt  =2 Σ_(k=0) ^n  (((−1)^k )/(2k+3)) changement of indice  k+1=p give  I_n  = 2 Σ_(p=1) ^(n+1)     (((−1)^(p−1) )/(2p+1)) ⇒  I_n  =2 Σ_(k=1) ^(n+1)    (((−1)^(k−1) )/(2k+1))  .
$${chsngement}\:\sqrt{\mathrm{1}−{x}}={t}\:{give} \\ $$$$\mathrm{1}−{x}={t}^{\mathrm{2}} \:\:\Rightarrow{x}=\mathrm{1}−{t}^{\mathrm{2}} \:\:{and}\: \\ $$$${I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} \:{t}\:\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}} \:\left(\:\sum_{{k}=\mathrm{0}} ^{{n}} \left(−{t}^{\mathrm{2}} \right)^{{k}} \right){dt} \\ $$$$=\mathrm{2}\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{k}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{k}+\mathrm{2}} \:{dt} \\ $$$$=\mathrm{2}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{3}}\:{changement}\:{of}\:{indice} \\ $$$${k}+\mathrm{1}={p}\:{give} \\ $$$${I}_{{n}} \:=\:\mathrm{2}\:\sum_{{p}=\mathrm{1}} ^{{n}+\mathrm{1}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{p}−\mathrm{1}} }{\mathrm{2}{p}+\mathrm{1}}\:\Rightarrow \\ $$$${I}_{{n}} \:=\mathrm{2}\:\sum_{{k}=\mathrm{1}} ^{{n}+\mathrm{1}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{\mathrm{2}{k}+\mathrm{1}}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *