Menu Close

find-the-value-of-I-n-0-1-x-n-1-x-dx-




Question Number 36410 by abdo.msup.com last updated on 01/Jun/18
find the value of I_n = ∫_0 ^1  x^n (√(1−x))dx
findthevalueofIn=01xn1xdx
Commented by abdo.msup.com last updated on 04/Jun/18
chsngement (√(1−x))=t give  1−x=t^2   ⇒x=1−t^2   and   I_n = ∫_0 ^1  (1−t^2 )^n  t (2t)dt  =2  ∫_0 ^1 t^2  ( Σ_(k=0) ^n (−t^2 )^k )dt  =2Σ_(k=0) ^n  (−1)^k  ∫_0 ^1  t^(2k+2)  dt  =2 Σ_(k=0) ^n  (((−1)^k )/(2k+3)) changement of indice  k+1=p give  I_n  = 2 Σ_(p=1) ^(n+1)     (((−1)^(p−1) )/(2p+1)) ⇒  I_n  =2 Σ_(k=1) ^(n+1)    (((−1)^(k−1) )/(2k+1))  .
chsngement1x=tgive1x=t2x=1t2andIn=01(1t2)nt(2t)dt=201t2(k=0n(t2)k)dt=2k=0n(1)k01t2k+2dt=2k=0n(1)k2k+3changementofindicek+1=pgiveIn=2p=1n+1(1)p12p+1In=2k=1n+1(1)k12k+1.

Leave a Reply

Your email address will not be published. Required fields are marked *