Menu Close

find-the-value-of-integral-0-e-2-ia-2-t-2-dt-with-a-from-R-a-lt-1-




Question Number 35229 by abdo mathsup 649 cc last updated on 16/May/18
find the value of integral  ∫_0 ^∞   e^(−(2+ia)^2 t^2 ) dt    with a from R    ∣a∣<1.
findthevalueofintegral0e(2+ia)2t2dtwithafromRa∣<1.
Commented by abdo mathsup 649 cc last updated on 17/May/18
Remark  we have A(α)= ∫_0 ^∞  e^(−(4 +4iα −α^2 )t^2 ) dt  = ∫_0 ^∞     e^(−(4 −α^2 )t^2 −4iαt^2 ) dt  = ∫_0 ^∞   e^((α^2 −4)t^2 ) {cos(4αt^2 ) −isin(4αt^2 )}dt =  ∫_0 ^∞    e^((α^2 −4)t^2 )  cos(4αt^2 ) −i ∫_0 ^∞   e^((α^2 −4)t^2 )  sin(4αt^2 )dt  ⇒ ∫_0 ^∞   e^((α^2 −4)t^2 ) cos(4αt^2 )dt = ((√π)/(4+α^2 ))  and  ∫_0 ^∞   e^((α^2 −4)t^2 ) sin(4αt^2 )dt = ((α(√π))/(8 +2α^2 )) .
RemarkwehaveA(α)=0e(4+4iαα2)t2dt=0e(4α2)t24iαt2dt=0e(α24)t2{cos(4αt2)isin(4αt2)}dt=0e(α24)t2cos(4αt2)i0e(α24)t2sin(4αt2)dt0e(α24)t2cos(4αt2)dt=π4+α2and0e(α24)t2sin(4αt2)dt=απ8+2α2.
Commented by abdo mathsup 649 cc last updated on 17/May/18
let put A(α) = ∫_0 ^∞    e^(−(2+iα)^2 t^2 ) dt  changement  (2+iα)t =x give  A(α) = (1/(2+iα)) ∫_0 ^∞     e^(−x^2 ) dx= ((√π)/(2(2+iα)))  = ((√π)/2) ((2−iα)/(4 +α^2 )) = ((√π)/(4+α^2 )) −((α(√π))/(2(4+α^2 )))
letputA(α)=0e(2+iα)2t2dtchangement(2+iα)t=xgiveA(α)=12+iα0ex2dx=π2(2+iα)=π22iα4+α2=π4+α2απ2(4+α2)
Answered by sma3l2996 last updated on 16/May/18
let u=(2+ia)t⇒dt=(du/(2+ia))  I=∫_0 ^∞ e^(−(2+ia)^2 t^2 ) dt=(1/(2+ia))∫_0 ^∞ e^(−u^2 ) du  =((√π)/(2(2+ia)))
letu=(2+ia)tdt=du2+iaI=0e(2+ia)2t2dt=12+ia0eu2du=π2(2+ia)

Leave a Reply

Your email address will not be published. Required fields are marked *