Menu Close

find-the-value-of-integral-R-z-a-1-dz-with-a-from-C-aplly-this-result-to-find-the-value-of-0-2-x-4-1-dx-




Question Number 25851 by abdo imad last updated on 15/Dec/17
find the value of integral   ∫_R (z−a)^(−1) dz  with a from C  aplly  this result to find the value of   ∫_0 ^∞ (2 +x^4_  )^(−1) dx.
findthevalueofintegralR(za)1dzwithafromCapllythisresulttofindthevalueof0(2+x4)1dx.
Commented by abdo imad last updated on 21/Dec/17
let put I(ξ)= ∫_(−ξ) ^ξ (dx/(x−a))  and a=α+iβ and β not 0  I(ξ) = ∫_(−ξ) ^ξ ((x−α+ iβ)/((x−α)^2  +β^2^  ))dx= A(ξ)+B(ξ) where  A(ξ) = ∫_(−ξ) ^ξ  ((x−α)/((x−α)^2 +β^2 ))dx and B(ξ) =iβ∫_(−ξ) ^ξ  (dx/((x−α)^2 +β^2 ))  but A(ξ)= (1/2)ln( (((ξ−α)^2 +β^2 )/((ξ+α)^2 +β^2 )) )   and lim _(ξ−>∝) A(ξ)=0  and by the changement x−α=βt    B(ξ)=iβ ∫_((−ξ−α)/β) ^((ξ−α)/β)    (β/(β^2 t^2  +β^2 ))dt =i( artan(((ξ−α)/β) ) +artan( ((ξ+α)/β)))  −−>if β>0   lim  B(ξ)_(ξ−>∝)   =iπ  if β<0   lim B(ξ)_(ξ−>∝)   =−iπ...look that β =im(a)  value of  I=∫_0 ^∞   (dx/(2+x^4 ))     I= (1/2)  ∫_R  (dx/(2+x^4 ))  and by changement  x= 2^(1/4)  t     ...I=   (2^(1/4) /4)  ∫_R    (dt/(t^4 +1))   let find the poles of f(z)= (1/(z^4 +1))  the roots of  z^4   +1=0  are the complex  z_k  =  e^(i(2k+1)(π/4))    k from[[0.3]]  z_0 = e^(i(π/4))    .. z_1   = e^(i((3π)/4))    .. z_2   = e^(i((5π)/4))     ..z_3   = e^(i((7π_ )/4))   f(z)  = Σ_(k=0) ^(k=3)    (λ_k /(z−z_k ))   and     λ_k   =   (1/(der( 1+z^4 )))=−(1/4)z_k    (der  means derivative  )  ∫_R   f(z) dz  =   ((−1)/4)  (  ∫_R  (z_0 /(z−z_0 ))dz  + ∫_R    (z_1 /(z−z_1 ))dz  +∫_R   (z_2 /(z−z_2 ))dz  +∫_R   (z_3 /(z−z_3 ))dz   )  = ((−1)/4) (iπ z_0   +iπ z_1  −iπz_2   −iπ z_3    ) because  im(z_0   )>0  im(z_1  )>0.. im(z_2   )<0    im(z_3  )<0  ∫_R   f(z)dz  = ((−iπ)/4)  ( z_0   +z_1   +z_2   +z_3    )  =((−iπ)/4)  ( z_0   − z_0 ^−  +z_0   −z_0 ^−    )  =((−iπ)/2)(2i) im(z_0  )  =  ((π (√2))/2)−−−>  ∫_0 ^∞ (dx/(2+x^4 ))  =  2^(1/4)   .4^(−1)  .((π(√2))/2)  −−−> ∫_R (dx/(2+x^4 ))  =  ((π(√2).2^(1/4) )/8)   ...
letputI(ξ)=ξξdxxaanda=α+iβandβnot0I(ξ)=ξξxα+iβ(xα)2+β2dx=A(ξ)+B(ξ)whereA(ξ)=ξξxα(xα)2+β2dxandB(ξ)=iβξξdx(xα)2+β2butA(ξ)=12ln((ξα)2+β2(ξ+α)2+β2)andlimξ>∝A(ξ)=0andbythechangementxα=βtB(ξ)=iβξαβξαβββ2t2+β2dt=i(artan(ξαβ)+artan(ξ+αβ))>ifβ>0limB(ξ)ξ>∝=iπifβ<0limB(ξ)ξ>∝=iπlookthatβ=im(a)valueofI=0dx2+x4I=12Rdx2+x4andbychangementx=214tI=2144Rdtt4+1letfindthepolesoff(z)=1z4+1therootsofz4+1=0arethecomplexzk=ei(2k+1)π4kfrom[[0.3]]z0=eiπ4..z1=ei3π4..z2=ei5π4..z3=ei7π4f(z)=k=0k=3λkzzkandλk=1der(1+z4)=14zk(dermeansderivative)Rf(z)dz=14(Rz0zz0dz+Rz1zz1dz+Rz2zz2dz+Rz3zz3dz)=14(iπz0+iπz1iπz2iπz3)becauseim(z0)>0im(z1)>0..im(z2)<0im(z3)<0Rf(z)dz=iπ4(z0+z1+z2+z3)=iπ4(z0z0+z0z0)=iπ2(2i)im(z0)=π22>0dx2+x4=214.41.π22>Rdx2+x4=π2.2148

Leave a Reply

Your email address will not be published. Required fields are marked *