Menu Close

find-the-value-of-k-1-n-1-sin-kpi-2n-




Question Number 27153 by abdo imad last updated on 02/Jan/18
find the value of Π_(k=1) ^(n−1)  sin(((kπ)/(2n)) ) .
findthevalueofk=1n1sin(kπ2n).
Commented by abdo imad last updated on 03/Jan/18
let introduce the polynomial p(x)= x^(2n)  −1  the roots of p(x)  are the complex  z_(k ) =e^(i((2k)/n))   and k∈[[0,2n−1]] and  p(x)=λ Π_(k=0) ^(n−1) (x−z_k  ) its clear that λ=1  and  p(x)=Π_(k=0) ^(n−1) (x−z_k ) we have z_0 = 1  , z_1 = e^(i(π/n))    , z_2 = e^(i((2π)/n))   z_(n−1) = e^(i(((n−1)π)/n))    ,  z_n = −1   , z_(n+1) = e^(i(((n+1)π)/n))   ,   z_(2n−1)  =e^(i(((2n−1)π)/(2n)))   we see that  z_(2n−1)  =z_1 ^−      ,  z_(2n−2) =z_2 ^−    ,   z_(n+1)  =z_(n−1) ^−   ⇒ p(x)= (x^2 −1) Π_(k=1) ^(n−1) (x −z_k  )(x−z_k ^−  )  =(x^2  −1) Π_(k=1) ^(n−1) (x^2  −2cos(((kπ)/n))x +1) and for x^2 ≠1  ((p(x))/(x^2 −1))  =  Π_(k=1) ^(n−1) ( x^2  −2cos(((kπ)/n))x +1) and by using hospital theoem  lim_(x−>1)  Π_(k=1) ^(n−1) ( x^2 −2cos(((kπ)/n))x +1) =lim_(x−>1) ((p^′ (x))/(2x))    Π_(k=1) ^(n−1) 2(1−cos(((kπ)/n)))= lim_(x−>1)  ((2nx^(2n−1) )/(2x))  =n  ⇒ 4^(n−1)  Π_(k=1) ^(k=n−1)  sin^2 (((kπ)/(2n)) )=n  ⇒     Π_(k=1) ^(n−1)  sin^2 (((kπ)/(2n)) ) = (n/4^(n−1) )  ⇒  Π_(k=1) ^(n−1)  sin (((kπ)/(2n)) )=  ((√n)/2^(n−1) )             (   n≥2)
letintroducethepolynomialp(x)=x2n1therootsofp(x)arethecomplexzk=ei2knandk[[0,2n1]]andp(x)=λk=0n1(xzk)itsclearthatλ=1andp(x)=k=0n1(xzk)wehavez0=1,z1=eiπn,z2=ei2πnzn1=ei(n1)πn,zn=1,zn+1=ei(n+1)πn,z2n1=ei(2n1)π2nweseethatz2n1=z1,z2n2=z2,zn+1=zn1p(x)=(x21)k=1n1(xzk)(xzk)=(x21)k=1n1(x22cos(kπn)x+1)andforx21p(x)x21=k=1n1(x22cos(kπn)x+1)andbyusinghospitaltheoemlimx>1k=1n1(x22cos(kπn)x+1)=limx>1p(x)2xk=1n12(1cos(kπn))=limx>12nx2n12x=n4n1k=1k=n1sin2(kπ2n)=nk=1n1sin2(kπ2n)=n4n1k=1n1sin(kπ2n)=n2n1(n2)
Commented by Tinkutara last updated on 03/Jan/18
I have already asked this a long time back. See this at Q 19292.

Leave a Reply

Your email address will not be published. Required fields are marked *