find-the-value-of-k-1-n-1-sin-kpi-2n- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 27153 by abdo imad last updated on 02/Jan/18 findthevalueof∏k=1n−1sin(kπ2n). Commented by abdo imad last updated on 03/Jan/18 letintroducethepolynomialp(x)=x2n−1therootsofp(x)arethecomplexzk=ei2knandk∈[[0,2n−1]]andp(x)=λ∏k=0n−1(x−zk)itsclearthatλ=1andp(x)=∏k=0n−1(x−zk)wehavez0=1,z1=eiπn,z2=ei2πnzn−1=ei(n−1)πn,zn=−1,zn+1=ei(n+1)πn,z2n−1=ei(2n−1)π2nweseethatz2n−1=z1−,z2n−2=z2−,zn+1=zn−1−⇒p(x)=(x2−1)∏k=1n−1(x−zk)(x−zk−)=(x2−1)∏k=1n−1(x2−2cos(kπn)x+1)andforx2≠1p(x)x2−1=∏k=1n−1(x2−2cos(kπn)x+1)andbyusinghospitaltheoemlimx−>1∏k=1n−1(x2−2cos(kπn)x+1)=limx−>1p′(x)2x∏k=1n−12(1−cos(kπn))=limx−>12nx2n−12x=n⇒4n−1∏k=1k=n−1sin2(kπ2n)=n⇒∏k=1n−1sin2(kπ2n)=n4n−1⇒∏k=1n−1sin(kπ2n)=n2n−1(n⩾2) Commented by Tinkutara last updated on 03/Jan/18 I have already asked this a long time back. See this at Q 19292. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: source-myself-x-5-3cx-2-x-5c-0-Next Next post: 1-1-ln-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.