Menu Close

Find-the-value-of-k-if-2-k-3-4-and-6-4-are-collinear-hence-find-the-equation-on-the-line-3i-j-with-the-above-points-




Question Number 39166 by Rio Mike last updated on 03/Jul/18
Find the value of k if  (2,k) ,(3,4) and (6,4) are  collinear.  hence find the equation on  the line 3i − j with the above  points
$${Find}\:{the}\:{value}\:{of}\:{k}\:{if} \\ $$$$\left(\mathrm{2},{k}\right)\:,\left(\mathrm{3},\mathrm{4}\right)\:{and}\:\left(\mathrm{6},\mathrm{4}\right)\:{are} \\ $$$${collinear}. \\ $$$${hence}\:{find}\:{the}\:{equation}\:{on} \\ $$$${the}\:{line}\:\mathrm{3}{i}\:−\:{j}\:{with}\:{the}\:{above} \\ $$$${points} \\ $$
Commented by Joel579 last updated on 03/Jul/18
collinear = have same gradient
$${collinear}\:=\:{have}\:{same}\:{gradient} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
slope=((4−4)/(6−3))=((4−k)/(3−2))  4−k=0     so k=0
$${slope}=\frac{\mathrm{4}−\mathrm{4}}{\mathrm{6}−\mathrm{3}}=\frac{\mathrm{4}−{k}}{\mathrm{3}−\mathrm{2}} \\ $$$$\mathrm{4}−{k}=\mathrm{0}\:\:\:\:\:{so}\:{k}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *