Menu Close

Find-the-value-of-k-satisfies-the-equation-0-pi-3-tan-x-cos-x-2k-dx-1-1-2-




Question Number 117944 by bemath last updated on 14/Oct/20
Find the value of k satisfies   the equation ∫ _0^(π/3)  (((tan x (√(cos x)))/( (√(2k)))) ) dx = 1−(1/( (√2)))
Findthevalueofksatisfiestheequation0π3(tanxcosx2k)dx=112
Answered by john santu last updated on 14/Oct/20
∫ _0^(π/3)  (((sin x (√(cos x)))/( (√(2k)) cos x)) ) dx = (((√2)−1)/( (√2)))  ⇒(1/( (√k))) ∫_0 ^(π/3)  ((sin x)/( (√(cos x)))) dx = (√2)−1  ⇒(1/( (√k) )) ∫_0 ^(π/3)  ((d(cos x))/( (√(cos x)))) = 1−(√2)  ⇒[ ((2 (√(cos x)))/( (√k))) ]_0 ^(π/3) = 1−(√2)  ⇒(((2/( (√2)))−2)/( (√k))) = 1−(√2) ; k = ((((√2)−2)/(1−(√2))))^2   ⇒k = ((((√2)(1−(√2)))/(1−(√2))))^2 = 2
0π3(sinxcosx2kcosx)dx=2121k0π3sinxcosxdx=211k0π3d(cosx)cosx=12[2cosxk]0π3=12222k=12;k=(2212)2k=(2(12)12)2=2
Answered by Dwaipayan Shikari last updated on 14/Oct/20
(1/( (√(2k))))∫_0 ^(π/3) ((sinx)/( (√(cosx))))dx=−(1/( (√(2k))))∫_1 ^(1/2) (dt/( (√t)))=(√(2/k)) [(√t)]_(1/2) ^1   (√(2/k))(1−(1/( (√2))))=1−(1/( (√2)))  (2/k)=1  k=2
12k0π3sinxcosxdx=12k112dtt=2k[t]1212k(112)=1122k=1k=2
Answered by 1549442205PVT last updated on 14/Oct/20
 ∫ _0^(π/3)  (((tan x (√(cos x)))/( (√(2k)))) ) dx = 1−(1/( (√2)))  ⇔ ∫ _0^(π/3)  (((sinx x (√(cos x)))/( cosx(√(2k)))) ) dx = 1−(1/( (√2)))   −∫ _0^(π/3)  ((( (√(cos x)))/( cosx(√(2k)))) ) d(cosx) = 1−(1/( (√2)))   ∫ _0^(π/3)  ((( 1)/( (√(cosx)) (√(2k)))) ) d(cosx) = −1+(1/( (√2)))  ∫_1 ^(1/2) (dt/( (√(2k)) (√t))) =−1+(1/( (√2)))⇔((2(√t))/( (√(2k))))∣_1 ^(1/2) =−1+(1/( (√2)))   ⇔((√2)/( (√k)))((1/( (√2)))−1)=(1/( (√2)))−1⇔((√2)/( (√k)))=1⇔k=2
0π3(tanxcosx2k)dx=1120π3(sinxxcosxcosx2k)dx=1120π3(cosxcosx2k)d(cosx)=1120π3(1cosx2k)d(cosx)=1+1211/2dt2kt=1+122t2k11/2=1+122k(121)=1212k=1k=2

Leave a Reply

Your email address will not be published. Required fields are marked *