Menu Close

Find-the-value-of-lim-x-pi-2-sinx-sinx-sinx-1-sinx-lnsinx-




Question Number 36018 by math1967 last updated on 27/May/18
Find the value of  lim_(x→(π/2))  ((sinx−(sinx)^(sinx) )/(1−sinx+lnsinx))
Findthevalueoflimxπ2sinx(sinx)sinx1sinx+lnsinx
Answered by tanmay.chaudhury50@gmail.com last updated on 27/May/18
t=(Π/2)−x   lim_(t→0)  ((sin((Π/2)−t)−{sin((Π/2)−t)}^({sin((Π/2)−t)}) )/(1−sin((Π/2)−t)+lnsin((Π/2)−t)))  lim_(t→0)  ((cost−(cost)^(cost) )/(1−cost+lncost))  k=cost  lim_(k→1)  ((k−k^k )/(1−k+lnk))  ((0/0))form using lh rule    y=k^k   lny=klnk  (1/y)(dy/dk)=k×(1/k)+lnk  (dy/dk)=k^k (1+lnk)  lim_(k→1)  ((1−k^k (1+lnk))/(−1+(1/k))) ((0/0))  lim_(k→1)  ((0−k^k ((1/k))−(1+lnk)(k^k )(1+lnk))/((−1)/k^2 ))  =((−1−(1+0)(1)(1+0))/(−1))  =((−2)/(−1))=2  Ans
t=Π2xlimt0sin(Π2t){sin(Π2t)}{sin(Π2t)}1sin(Π2t)+lnsin(Π2t)limt0cost(cost)cost1cost+lncostk=costlimk1kkk1k+lnk(00)formusinglhruley=kklny=klnk1ydydk=k×1k+lnkdydk=kk(1+lnk)limk11kk(1+lnk)1+1k(00)limk10kk(1k)(1+lnk)(kk)(1+lnk)1k2=1(1+0)(1)(1+0)1=21=2Ans

Leave a Reply

Your email address will not be published. Required fields are marked *