Question Number 61386 by maxmathsup by imad last updated on 02/Jun/19
$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$
Commented by perlman last updated on 02/Jun/19
$${x}={tg}\left({a}\right) \\ $$$${dx}=\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({a}\right)\right){da}==>{da}=\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\int_{−\frac{\pi}{\mathrm{2}}} ^{+\frac{\pi}{\mathrm{2}}} \frac{{ln}\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({a}\right)\right)}{}{da}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \left({a}\right)}\right){da}=−\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\left({a}\right)\right){da} \\ $$$${I}=\int{ln}\left({cos}\left({a}\right)\right){da}=\int{ln}\left({sin}\left({a}\right)\right){da} \\ $$$$==>\mathrm{2}{I}=\int\left\{{ln}\left({cos}\left({a}\right)\right)+{ln}\left({sin}\left({a}\right)\right)\right\}{da}=\int{ln}\left({cos}\left({a}\right){sin}\left({a}\right)\right){da} \\ $$$$=\int\left({ln}\left({sin}\left(\mathrm{2}{a}\right)−{ln}\left(\mathrm{2}\right)\right){da}=−{ln}\left(\mathrm{2}\right)\frac{\pi}{\mathrm{2}}+\int{ln}\left({sin}\left(\mathrm{2}{a}\right)\right){da}\right. \\ $$$${let}\:\mathrm{2}{a}={x} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {lnsin}\left(\mathrm{2}{a}\right){da}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} {lnsinx}\:{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {lnsinxdx}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} {lnsinxdx} \\ $$$${let}\:{y}=\frac{\pi}{\mathrm{2}}−{x}\:{in}\:{second}\:{one} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {lnsin}\left(\mathrm{2}{a}\right){da}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {lnsinxdx}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {lncos}\left({a}\right){da}=\mathrm{0} \\ $$$$==>\mathrm{2}{I}=\frac{−{ln}\left(\mathrm{2}\right)\pi}{\mathrm{2}}==>{I}=\frac{−{ln}\left(\mathrm{2}\right)\pi}{\mathrm{4}} \\ $$
Commented by maxmathsup by imad last updated on 02/Jun/19
$${let}\:{A}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\Rightarrow{A}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{changement}\:{x}\:={tan}\theta\:{give} \\ $$$${A}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta}\right){d}\theta \\ $$$$=−\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({cos}\theta\right){d}\theta\:\:\:\:\:{we}\:{have}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\theta\right){d}\theta\:=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:\left({result}\:{proved}\right)\:\Rightarrow \\ $$$${A}\:=−\mathrm{4}\left(\frac{−\pi}{\mathrm{2}}\right){ln}\left(\mathrm{2}\right)\:\Rightarrow{A}\:=\mathrm{2}\pi\:{ln}\left(\mathrm{2}\right)\:. \\ $$
Commented by maxmathsup by imad last updated on 02/Jun/19
$${parametric}\:\:{way}\:\:\:\:{let}\:{f}\left({t}\right)\:=\int_{−\infty} ^{+\infty} \:\frac{{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${f}^{'} \left({t}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)}\:{dx}\:\:\:{let}\:\varphi\left({z}\right)\:=\frac{{z}^{\mathrm{2}} }{\left({tz}^{\mathrm{2}} +\mathrm{1}\right)\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)}\:\:\:{poles}\:{of}\:\varphi? \\ $$$$\varphi\left({z}\right)\:=\frac{{z}^{\mathrm{2}} }{\left(\sqrt{{t}}{z}−{i}\right)\left(\sqrt{{t}}{z}\:+{i}\right)\left({z}−{i}\right)\left({z}+{i}\right)}\:=\frac{{z}^{\mathrm{2}} }{{t}\left({z}−\frac{{i}}{\:\sqrt{{t}}}\right)\left({z}+\frac{{i}}{\:\sqrt{{t}}}\right)\left({z}−{i}\right)\left({z}+{i}\right)} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}{i}\:\:{and}\:\overset{−} {+}\frac{{i}}{\:\sqrt{{t}}}\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,{i}\right)\:+{Res}\left(\varphi,\frac{{i}}{\:\sqrt{{t}}}\right)\right\} \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \left({z}−{i}\right)\varphi\left({z}\right)\:=\:\frac{−\mathrm{1}}{\left(\mathrm{1}−{t}\right)\mathrm{2}{i}}\:=\frac{−\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}−{t}\right)} \\ $$$${Res}\left(\varphi,\frac{{i}}{\:\sqrt{{t}}}\right)\:={lim}_{{z}\rightarrow\frac{{i}}{\:\sqrt{{t}}}} \:\:\:\left({z}−\frac{{i}}{\:\sqrt{{t}}}\right)\varphi\left({z}\right)\:=\frac{−\mathrm{1}}{{t}^{\mathrm{2}} \left(\frac{\mathrm{2}{i}}{\:\sqrt{{t}}}\right)\left(−\frac{\mathrm{1}}{{t}}+\mathrm{1}\right)}\:=\frac{−{t}\sqrt{{t}}}{\mathrm{2}{it}^{\mathrm{2}} \left({t}−\mathrm{1}\right)}\:=−\frac{\sqrt{{t}}}{\mathrm{2}{it}\left({t}−\mathrm{1}\right)} \\ $$$$\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:\frac{−\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}−{t}\right)}\:+\frac{\sqrt{{t}}}{\mathrm{2}{it}\left(\mathrm{1}−{t}\right)}\right\}\:=\pi\left\{\frac{\sqrt{{t}}}{{t}\left(\mathrm{1}−{t}\right)}\:−\frac{\mathrm{1}}{\mathrm{1}−{t}}\right\}\:={f}^{'} \left({t}\right)\:\Rightarrow \\ $$$${f}\left({t}\right)\:=\pi\:\int\:\:\frac{\sqrt{{t}}{dt}}{{t}\left(\mathrm{1}−{t}\right)}\:−\pi\:\int\:\frac{{dt}}{\mathrm{1}−{t}}\:+{c} \\ $$$$\int\:\:\frac{{dt}}{\mathrm{1}−{t}}\:=−{ln}\mid\mathrm{1}−{t}\mid\:+{c}_{\mathrm{0}} \\ $$$$\int\:\:\frac{\sqrt{{t}}{dt}}{{t}\left(\mathrm{1}−{t}\right)}\:=_{\sqrt{{t}}={u}} \:\:\:\:\:\:\int\:\frac{{u}\left(\mathrm{2}{u}\right){du}}{{u}^{\mathrm{2}} \left(\mathrm{1}−{u}^{\mathrm{2}} \right)}\:=\:\int\:\:\frac{\mathrm{2}{du}}{\mathrm{1}−{u}^{\mathrm{2}} }\:=\int\:\:\left\{\frac{\mathrm{1}}{\mathrm{1}−{u}}\:+\frac{\mathrm{1}}{\mathrm{1}+{u}}\right\}{du} \\ $$$$={ln}\mid\frac{\mathrm{1}+{u}}{\mathrm{1}−{u}}\mid\:+{c}_{\mathrm{1}} ={ln}\mid\frac{\mathrm{1}+\sqrt{{t}}}{\mathrm{1}−\sqrt{{t}}}\mid\:+{c}_{\mathrm{1}} \:\Rightarrow \\ $$$${f}\left({t}\right)\:=\pi{ln}\mid\frac{\mathrm{1}+\sqrt{{t}}}{\mathrm{1}−\sqrt{{t}}}\mid\:+\pi{ln}\mid\mathrm{1}−{t}\mid\:+{c} \\ $$$${f}\left(\mathrm{0}\right)\:=\mathrm{0}\:={c}\:\Rightarrow{f}\left({t}\right)\:=\pi{ln}\mid\frac{\mathrm{1}+\sqrt{{t}}}{\mathrm{1}−\sqrt{{t}}}\mid\:+\pi{ln}\mid\mathrm{1}−{t}\mid\:. \\ $$$$\int_{−\infty} ^{+\infty} \:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:={lim}_{{x}\rightarrow\mathrm{1}} {f}\left(\mathrm{1}\right)\:\:\:{let}\:{find}\:\:{this}\:{limit} \\ $$$${f}\left({t}\right)\:=\pi{ln}\mid\mathrm{1}+\sqrt{{t}}\mid−\pi{ln}\mid\mathrm{1}−\sqrt{{t}}\mid+\pi{ln}\mid\mathrm{1}−{t}\mid\:\Rightarrow \\ $$$${f}\left({u}^{\mathrm{2}} \right)\:=\pi{ln}\left(\mathrm{1}+{u}\right)−\pi{ln}\mid\mathrm{1}−{u}\mid\:+\pi{ln}\mid\mathrm{1}−{u}^{\mathrm{2}} \mid\:=\mathrm{2}\pi{ln}\left(\mathrm{1}+{u}\right)\:\Rightarrow \\ $$$${lim}_{{t}\rightarrow\mathrm{1}} {f}\left({t}\right)\:={lim}_{{u}\rightarrow\mathrm{1}} {f}\left({u}^{\mathrm{2}} \right)\:=\mathrm{2}\pi{ln}\left(\mathrm{2}\right)\:\:\:\Rightarrow\bigstar\int_{−\infty} ^{+\infty} \:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:=\mathrm{2}\pi{ln}\left(\mathrm{2}\right)\bigstar \\ $$$${and}\:{generally}\:\:\:\int_{−\infty} ^{+\infty} \:\frac{{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\pi{ln}\mid\frac{\mathrm{1}+\sqrt{{t}}}{\mathrm{1}−\sqrt{{t}}}\mid\:+\pi{ln}\mid\mathrm{1}−{t}\mid\:\:\:{with}\:{t}\geqslant\mathrm{0} \\ $$$$ \\ $$$$ \\ $$