find-the-value-of-ln-1-x-2-1-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 61386 by maxmathsup by imad last updated on 02/Jun/19 findthevalueof∫−∞+∞ln(1+x2)1+x2dx Commented by perlman last updated on 02/Jun/19 x=tg(a)dx=(1+tg2(a))da==>da=dx1+x2=∫−π2+π2ln(1+tg2(a))da=2∫0π2ln(1cos2(a))da=−4∫0π2ln(cos(a))daI=∫ln(cos(a))da=∫ln(sin(a))da==>2I=∫{ln(cos(a))+ln(sin(a))}da=∫ln(cos(a)sin(a))da=∫(ln(sin(2a)−ln(2))da=−ln(2)π2+∫ln(sin(2a))dalet2a=x∫0π2lnsin(2a)da=12∫0πlnsinxdx=12∫0π2lnsinxdx+12∫π2πlnsinxdxlety=π2−xinsecondone∫0π2lnsin(2a)da=12∫0π2lnsinxdx−12∫0π2lncos(a)da=0==>2I=−ln(2)π2==>I=−ln(2)π4 Commented by maxmathsup by imad last updated on 02/Jun/19 letA=∫−∞+∞ln(1+x2)1+x2dx⇒A=2∫0∞ln(1+x2)1+x2dxchangementx=tanθgiveA=2∫0π2ln(1+tan2θ)1+tan2θ(1+tan2θ)dθ=2∫0π2ln(1cos2θ)dθ=−4∫0π2ln(cosθ)dθwehave∫0π2ln(cosθ)dθ=−π2ln(2)(resultproved)⇒A=−4(−π2)ln(2)⇒A=2πln(2). Commented by maxmathsup by imad last updated on 02/Jun/19 parametricwayletf(t)=∫−∞+∞ln(1+tx2)1+x2dxwitht⩾0f′(t)=∫−∞+∞x2(1+tx2)(x2+1)dxletφ(z)=z2(tz2+1)(z2+1)polesofφ?φ(z)=z2(tz−i)(tz+i)(z−i)(z+i)=z2t(z−it)(z+it)(z−i)(z+i)thepolesofφare+−iand+−itresidustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,i)+Res(φ,it)}Res(φ,i)=limz→i(z−i)φ(z)=−1(1−t)2i=−12i(1−t)Res(φ,it)=limz→it(z−it)φ(z)=−1t2(2it)(−1t+1)=−tt2it2(t−1)=−t2it(t−1)⇒∫−∞+∞φ(z)dz=2iπ{−12i(1−t)+t2it(1−t)}=π{tt(1−t)−11−t}=f′(t)⇒f(t)=π∫tdtt(1−t)−π∫dt1−t+c∫dt1−t=−ln∣1−t∣+c0∫tdtt(1−t)=t=u∫u(2u)duu2(1−u2)=∫2du1−u2=∫{11−u+11+u}du=ln∣1+u1−u∣+c1=ln∣1+t1−t∣+c1⇒f(t)=πln∣1+t1−t∣+πln∣1−t∣+cf(0)=0=c⇒f(t)=πln∣1+t1−t∣+πln∣1−t∣.∫−∞+∞ln(1+x2)1+x2dx=limx→1f(1)letfindthislimitf(t)=πln∣1+t∣−πln∣1−t∣+πln∣1−t∣⇒f(u2)=πln(1+u)−πln∣1−u∣+πln∣1−u2∣=2πln(1+u)⇒limt→1f(t)=limu→1f(u2)=2πln(2)⇒★∫−∞+∞ln(1+x2)1+x2dx=2πln(2)★andgenerally∫−∞+∞ln(1+tx2)1+x2dx=πln∣1+t1−t∣+πln∣1−t∣witht⩾0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-126921Next Next post: lim-x-2-x-2cos-2-x-2-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.