Menu Close

find-the-value-of-ln-1-x-2-1-x-2-dx-




Question Number 61386 by maxmathsup by imad last updated on 02/Jun/19
find the value of ∫_(−∞) ^(+∞)   ((ln(1+x^2 ))/(1+x^2 )) dx
findthevalueof+ln(1+x2)1+x2dx
Commented by perlman last updated on 02/Jun/19
x=tg(a)  dx=(1+tg^2 (a))da==>da=(dx/(1+x^2 ))  =∫_(−(π/2)) ^(+(π/2)) ((ln(1+tg^2 (a)))/)da=2∫_0 ^(π/2) ln((1/(cos^2 (a))))da=−4∫_0 ^(π/2) ln(cos(a))da  I=∫ln(cos(a))da=∫ln(sin(a))da  ==>2I=∫{ln(cos(a))+ln(sin(a))}da=∫ln(cos(a)sin(a))da  =∫(ln(sin(2a)−ln(2))da=−ln(2)(π/2)+∫ln(sin(2a))da  let 2a=x  ∫_0 ^(π/2) lnsin(2a)da=(1/2)∫_0 ^π lnsinx dx=(1/2)∫_0 ^(π/2) lnsinxdx+(1/2)∫_(π/2) ^π lnsinxdx  let y=(π/2)−x in second one  ∫_0 ^(π/2) lnsin(2a)da=(1/2)∫_0 ^(π/2) lnsinxdx−(1/2)∫_0 ^(π/2) lncos(a)da=0  ==>2I=((−ln(2)π)/2)==>I=((−ln(2)π)/4)
x=tg(a)dx=(1+tg2(a))da==>da=dx1+x2=π2+π2ln(1+tg2(a))da=20π2ln(1cos2(a))da=40π2ln(cos(a))daI=ln(cos(a))da=ln(sin(a))da==>2I={ln(cos(a))+ln(sin(a))}da=ln(cos(a)sin(a))da=(ln(sin(2a)ln(2))da=ln(2)π2+ln(sin(2a))dalet2a=x0π2lnsin(2a)da=120πlnsinxdx=120π2lnsinxdx+12π2πlnsinxdxlety=π2xinsecondone0π2lnsin(2a)da=120π2lnsinxdx120π2lncos(a)da=0==>2I=ln(2)π2==>I=ln(2)π4
Commented by maxmathsup by imad last updated on 02/Jun/19
let A =∫_(−∞) ^(+∞)   ((ln(1+x^2 ))/(1+x^2 )) dx ⇒A =2 ∫_0 ^∞   ((ln(1+x^2 ))/(1+x^2 ))dx changement x =tanθ give  A =2 ∫_0 ^(π/2)    ((ln(1+tan^2 θ))/(1+tan^2 θ))(1+tan^2 θ)dθ =2 ∫_0 ^(π/2)  ln((1/(cos^2 θ)))dθ  =−4 ∫_0 ^(π/2)  ln(cosθ)dθ     we have  ∫_0 ^(π/2) ln(cosθ)dθ =−(π/2)ln(2) (result proved) ⇒  A =−4(((−π)/2))ln(2) ⇒A =2π ln(2) .
letA=+ln(1+x2)1+x2dxA=20ln(1+x2)1+x2dxchangementx=tanθgiveA=20π2ln(1+tan2θ)1+tan2θ(1+tan2θ)dθ=20π2ln(1cos2θ)dθ=40π2ln(cosθ)dθwehave0π2ln(cosθ)dθ=π2ln(2)(resultproved)A=4(π2)ln(2)A=2πln(2).
Commented by maxmathsup by imad last updated on 02/Jun/19
parametric  way    let f(t) =∫_(−∞) ^(+∞)  ((ln(1+tx^2 ))/(1+x^2 )) dx with t≥0  f^′ (t) =∫_(−∞) ^(+∞)    (x^2 /((1+tx^2 )(x^2  +1))) dx   let ϕ(z) =(z^2 /((tz^2 +1)(z^2  +1)))   poles of ϕ?  ϕ(z) =(z^2 /(((√t)z−i)((√t)z +i)(z−i)(z+i))) =(z^2 /(t(z−(i/( (√t))))(z+(i/( (√t))))(z−i)(z+i)))  the poles of ϕ are +^− i  and +^− (i/( (√t)))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,i) +Res(ϕ,(i/( (√t))))}  Res(ϕ,i) =lim_(z→i) (z−i)ϕ(z) = ((−1)/((1−t)2i)) =((−1)/(2i(1−t)))  Res(ϕ,(i/( (√t)))) =lim_(z→(i/( (√t))))    (z−(i/( (√t))))ϕ(z) =((−1)/(t^2 (((2i)/( (√t))))(−(1/t)+1))) =((−t(√t))/(2it^2 (t−1))) =−((√t)/(2it(t−1)))  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ ((−1)/(2i(1−t))) +((√t)/(2it(1−t)))} =π{((√t)/(t(1−t))) −(1/(1−t))} =f^′ (t) ⇒  f(t) =π ∫  (((√t)dt)/(t(1−t))) −π ∫ (dt/(1−t)) +c  ∫  (dt/(1−t)) =−ln∣1−t∣ +c_0   ∫  (((√t)dt)/(t(1−t))) =_((√t)=u)       ∫ ((u(2u)du)/(u^2 (1−u^2 ))) = ∫  ((2du)/(1−u^2 )) =∫  {(1/(1−u)) +(1/(1+u))}du  =ln∣((1+u)/(1−u))∣ +c_1 =ln∣((1+(√t))/(1−(√t)))∣ +c_1  ⇒  f(t) =πln∣((1+(√t))/(1−(√t)))∣ +πln∣1−t∣ +c  f(0) =0 =c ⇒f(t) =πln∣((1+(√t))/(1−(√t)))∣ +πln∣1−t∣ .  ∫_(−∞) ^(+∞)  ((ln(1+x^2 ))/(1+x^2 )) dx =lim_(x→1) f(1)   let find  this limit  f(t) =πln∣1+(√t)∣−πln∣1−(√t)∣+πln∣1−t∣ ⇒  f(u^2 ) =πln(1+u)−πln∣1−u∣ +πln∣1−u^2 ∣ =2πln(1+u) ⇒  lim_(t→1) f(t) =lim_(u→1) f(u^2 ) =2πln(2)   ⇒★∫_(−∞) ^(+∞)  ((ln(1+x^2 ))/(1+x^2 )) dx =2πln(2)★  and generally   ∫_(−∞) ^(+∞)  ((ln(1+tx^2 ))/(1+x^2 ))dx =πln∣((1+(√t))/(1−(√t)))∣ +πln∣1−t∣   with t≥0
parametricwayletf(t)=+ln(1+tx2)1+x2dxwitht0f(t)=+x2(1+tx2)(x2+1)dxletφ(z)=z2(tz2+1)(z2+1)polesofφ?φ(z)=z2(tzi)(tz+i)(zi)(z+i)=z2t(zit)(z+it)(zi)(z+i)thepolesofφare+iand+itresidustheoremgive+φ(z)dz=2iπ{Res(φ,i)+Res(φ,it)}Res(φ,i)=limzi(zi)φ(z)=1(1t)2i=12i(1t)Res(φ,it)=limzit(zit)φ(z)=1t2(2it)(1t+1)=tt2it2(t1)=t2it(t1)+φ(z)dz=2iπ{12i(1t)+t2it(1t)}=π{tt(1t)11t}=f(t)f(t)=πtdtt(1t)πdt1t+cdt1t=ln1t+c0tdtt(1t)=t=uu(2u)duu2(1u2)=2du1u2={11u+11+u}du=ln1+u1u+c1=ln1+t1t+c1f(t)=πln1+t1t+πln1t+cf(0)=0=cf(t)=πln1+t1t+πln1t.+ln(1+x2)1+x2dx=limx1f(1)letfindthislimitf(t)=πln1+tπln1t+πln1tf(u2)=πln(1+u)πln1u+πln1u2=2πln(1+u)limt1f(t)=limu1f(u2)=2πln(2)+ln(1+x2)1+x2dx=2πln(2)andgenerally+ln(1+tx2)1+x2dx=πln1+t1t+πln1twitht0

Leave a Reply

Your email address will not be published. Required fields are marked *