Menu Close

find-the-value-of-n-0-1-3-n-n-1-n-2-




Question Number 31749 by abdo imad last updated on 13/Mar/18
find the value of   Σ_(n=0) ^∞    (1/(3^n (n+1)(n+2))) .
findthevalueofn=013n(n+1)(n+2).
Commented by abdo imad last updated on 14/Mar/18
let put  S(x)=Σ_(n=0) ^∞   (x^n /((n+1)(n+2)))=Σ_(n=0) ^∞  a_n x^n   let find the radius of this serie we have  (a_(n+1) /a_n ) =(((n+1)(n+2))/((n+2)(n+3{)) ⇒ lim_(n→∞)  (a_(n+1) /a_n ) =1 so for ∣x∣<1  the serie is convergent we have   S(x)=Σ_(n=0) ^∞  ((1/(n+1)) −(1/(n+2)))x^n   =Σ_(n=0) ^∞  (x^n /(n+1)) −Σ_(n=0) ^∞  (x^n /(n+2))  =Σ_(n=1) ^∞  (x^(n−1) /n) −Σ_(n=2) ^∞   (x^(n−2) /n)  =(1/x) Σ_(n=1) ^∞  (x^n /n) −(1/x^2 ) (Σ_(n=1) ^∞  (x^n /n) −x)  =(1/x)  +((1/x) −(1/x^2 ))Σ_(n=1) ^∞  (x^n /n)  let put f(x)=Σ_(n=1) ^∞  (x^n /n)  f^′ (x)= Σ_(n=1) ^∞  x^(n−1)  =Σ_(n=0) ^∞  x^n =(1/(1−x)) ⇒f(x)=−ln∣1−x∣ +λ  λ=f(0)=0  ⇒ Σ_(n=1) ^∞  (x^n /n)  ⇒ S(x)= (1/x) −((1/x)−(1/x^2 ))ln∣1−x∣  Σ_(n=0) ^∞      (1/(3^n (n+1)(n+2))) =S((1/3))  =3 −(3 −9)ln∣(2/3)∣= 3+6(ln(2)−ln(3))  .
letputS(x)=n=0xn(n+1)(n+2)=n=0anxnletfindtheradiusofthisseriewehavean+1an=(n+1)(n+2)(n+2)(n+3{limnan+1an=1soforx∣<1theserieisconvergentwehaveS(x)=n=0(1n+11n+2)xn=n=0xnn+1n=0xnn+2=n=1xn1nn=2xn2n=1xn=1xnn1x2(n=1xnnx)=1x+(1x1x2)n=1xnnletputf(x)=n=1xnnf(x)=n=1xn1=n=0xn=11xf(x)=ln1x+λλ=f(0)=0n=1xnnS(x)=1x(1x1x2)ln1xn=013n(n+1)(n+2)=S(13)=3(39)ln23∣=3+6(ln(2)ln(3)).
Commented by rahul 19 last updated on 14/Mar/18
can u provide sol. for this one ?  I tried as:  Σ_(n=0) ^∞ ((1/(n+1))−(1/(n+2)))(1/3^n ) but could not find   any pattern further.
canuprovidesol.forthisone?Itriedas:n=0(1n+11n+2)13nbutcouldnotfindanypatternfurther.

Leave a Reply

Your email address will not be published. Required fields are marked *