Menu Close

find-the-value-of-n-0-1-3-n-n-1-n-2-




Question Number 31749 by abdo imad last updated on 13/Mar/18
find the value of   Σ_(n=0) ^∞    (1/(3^n (n+1)(n+2))) .
$${find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{3}^{{n}} \left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:. \\ $$
Commented by abdo imad last updated on 14/Mar/18
let put  S(x)=Σ_(n=0) ^∞   (x^n /((n+1)(n+2)))=Σ_(n=0) ^∞  a_n x^n   let find the radius of this serie we have  (a_(n+1) /a_n ) =(((n+1)(n+2))/((n+2)(n+3{)) ⇒ lim_(n→∞)  (a_(n+1) /a_n ) =1 so for ∣x∣<1  the serie is convergent we have   S(x)=Σ_(n=0) ^∞  ((1/(n+1)) −(1/(n+2)))x^n   =Σ_(n=0) ^∞  (x^n /(n+1)) −Σ_(n=0) ^∞  (x^n /(n+2))  =Σ_(n=1) ^∞  (x^(n−1) /n) −Σ_(n=2) ^∞   (x^(n−2) /n)  =(1/x) Σ_(n=1) ^∞  (x^n /n) −(1/x^2 ) (Σ_(n=1) ^∞  (x^n /n) −x)  =(1/x)  +((1/x) −(1/x^2 ))Σ_(n=1) ^∞  (x^n /n)  let put f(x)=Σ_(n=1) ^∞  (x^n /n)  f^′ (x)= Σ_(n=1) ^∞  x^(n−1)  =Σ_(n=0) ^∞  x^n =(1/(1−x)) ⇒f(x)=−ln∣1−x∣ +λ  λ=f(0)=0  ⇒ Σ_(n=1) ^∞  (x^n /n)  ⇒ S(x)= (1/x) −((1/x)−(1/x^2 ))ln∣1−x∣  Σ_(n=0) ^∞      (1/(3^n (n+1)(n+2))) =S((1/3))  =3 −(3 −9)ln∣(2/3)∣= 3+6(ln(2)−ln(3))  .
$${let}\:{put}\:\:{S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}=\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{{n}} \\ $$$${let}\:{find}\:{the}\:{radius}\:{of}\:{this}\:{serie}\:{we}\:{have} \\ $$$$\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\:=\frac{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\left\{\right.\right.}\:\Rightarrow\:{lim}_{{n}\rightarrow\infty} \:\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\:=\mathrm{1}\:{so}\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$$${the}\:{serie}\:{is}\:{convergent}\:{we}\:{have}\: \\ $$$${S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}\:−\frac{\mathrm{1}}{{n}+\mathrm{2}}\right){x}^{{n}} \:\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} }{{n}+\mathrm{1}}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} }{{n}+\mathrm{2}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}−\mathrm{1}} }{{n}}\:−\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{{x}^{{n}−\mathrm{2}} }{{n}} \\ $$$$=\frac{\mathrm{1}}{{x}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:−{x}\right) \\ $$$$=\frac{\mathrm{1}}{{x}}\:\:+\left(\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:\:{let}\:{put}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}} \\ $$$${f}^{'} \left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}−\mathrm{1}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}}\:\Rightarrow{f}\left({x}\right)=−{ln}\mid\mathrm{1}−{x}\mid\:+\lambda \\ $$$$\lambda={f}\left(\mathrm{0}\right)=\mathrm{0}\:\:\Rightarrow\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:\:\Rightarrow\:{S}\left({x}\right)=\:\frac{\mathrm{1}}{{x}}\:−\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){ln}\mid\mathrm{1}−{x}\mid \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{1}}{\mathrm{3}^{{n}} \left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:={S}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=\mathrm{3}\:−\left(\mathrm{3}\:−\mathrm{9}\right){ln}\mid\frac{\mathrm{2}}{\mathrm{3}}\mid=\:\mathrm{3}+\mathrm{6}\left({ln}\left(\mathrm{2}\right)−{ln}\left(\mathrm{3}\right)\right)\:\:. \\ $$
Commented by rahul 19 last updated on 14/Mar/18
can u provide sol. for this one ?  I tried as:  Σ_(n=0) ^∞ ((1/(n+1))−(1/(n+2)))(1/3^n ) but could not find   any pattern further.
$${can}\:{u}\:{provide}\:{sol}.\:{for}\:{this}\:{one}\:? \\ $$$${I}\:{tried}\:{as}: \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+\mathrm{2}}\right)\frac{\mathrm{1}}{\mathrm{3}^{{n}} }\:{but}\:{could}\:{not}\:{find}\: \\ $$$${any}\:{pattern}\:{further}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *