Menu Close

find-the-value-of-n-0-1-n-2-1-and-n-0-1-n-n-2-1-




Question Number 42266 by maxmathsup by imad last updated on 21/Aug/18
find the value of  Σ_(n =0) ^∞   (1/(n^2  +1))  and Σ_(n=0) ^∞   (((−1)^n )/(n^2  +1)) .
findthevalueofn=01n2+1andn=0(1)nn2+1.
Commented by maxmathsup by imad last updated on 22/Aug/18
we have proved that   e^(−∣x∣)  =((1−e^(−π) )/π)  +(2/π) Σ_(n=1) ^∞  ((1−(−1)^n  e^(−π) )/(n^2  +1)) cos(nx)  x=0 ⇒1 = ((1−e^(−π) )/π) +(2/π) Σ_(n=1) ^∞  (1/(n^2  +1)) −((2e^(−π) )/π) Σ_(n=1) ^∞   (((−1)^n )/(n^2 +1))  let   s =Σ_(n=1) ^∞   (1/(n^2  +1)) and w =Σ_(n=1) ^∞   (((−1)^n )/(n^2  +1)) ⇒  1−((1−e^(−π) )/π) =(2/π) s −(2/π)e^(−π)  w ⇒(π/2)(((π−1+e^(−π) )/π))=s−e^(−π)  w ⇒  s −e^(−π) w =((π−1+e^(−π) )/2)  x =π ⇒e^(−π)  =((1−e^(−π) )/π) +(2/π) Σ_(n=1) ^∞  (((−1)^n )/(n^2  +1)) −((2e^(−π) )/π) Σ_(n=1) ^∞   (1/(n^2  +1)) ⇒  e^(−π)  −((1−e^(−π) )/π) =(2/π)w −((2e^(−π) )/π) s ⇒(π/2)(((π e^(−π)  −1 +e^(−π) )/π)) =−2e^(−π)  s +w ⇒  ((π e^(−π)  −1+e^(−π) )/2)  =−2 e^(−π) s +w  we get the system  s −e^(−π) w =((π−1 +e^(−π) )/2)  and  −2 e^(−π)  s +w =(((π+1)e^(−π) )/2) ⇒  −2 e^(−2π)  s +e^(−π) w =(((π+1)e^(−2π) )/2) ⇒  (1−2e^(−2π) )s = ((π−1+e^(−π)   +(π+1)e^(−2π) )/2) ⇒  s =((π−1 +e^(−π)  +(π+1)e^(−2π) )/(2(1−2 e^(−2π) )))    and  w =(((π+1)e^(−π) )/2) +2 e^(−π)  s .
wehaveprovedthatex=1eππ+2πn=11(1)neπn2+1cos(nx)x=01=1eππ+2πn=11n2+12eππn=1(1)nn2+1lets=n=11n2+1andw=n=1(1)nn2+111eππ=2πs2πeπwπ2(π1+eππ)=seπwseπw=π1+eπ2x=πeπ=1eππ+2πn=1(1)nn2+12eππn=11n2+1eπ1eππ=2πw2eππsπ2(πeπ1+eππ)=2eπs+wπeπ1+eπ2=2eπs+wwegetthesystemseπw=π1+eπ2and2eπs+w=(π+1)eπ22e2πs+eπw=(π+1)e2π2(12e2π)s=π1+eπ+(π+1)e2π2s=π1+eπ+(π+1)e2π2(12e2π)andw=(π+1)eπ2+2eπs.

Leave a Reply

Your email address will not be published. Required fields are marked *