find-the-value-of-n-0-1-n-2n-1-2n-3- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 31982 by abdo imad last updated on 17/Mar/18 findthevalueof∑n=0∞(−1)n(2n+1)(2n+3). Commented by 6123 last updated on 18/Mar/18 ∑∞n=0(−1)n(2n+1)(2n+3)=12∑∞n=0(−1)n(12n+1−12n+3).=12[(1−13)+(15−13)+(15−17)+(19−17)+…]=12[1+2(15+19+113+…)−2(13+17+111+…)]therestishistory. Commented by abdo imad last updated on 18/Mar/18 letputS=∑n=0∞(−1)n(2n+1)(2n+3)andS(x)=∑n=0∞xn(2n+1)(2n+3)wehaveS(−1)=SbutS(x)=12(∑n=0∞(12n+1−12n+3)xn)⇒forx≠o2S(x)=∑n=0∞xn2n+1−∑n=0∞xn2n+3but∑n=0∞xn2n+3=13+∑n=1∞xn2n+3=13+∑n=0∞xn−12n+1=13+1x∑n=0∞xn2n+1⇒2S(x)=−13+(1−1x)∑n=0∞xn2n+1letcalculatefor−1⩽x<0A(x)=∑n=0∞xn2n+1⇒A(x)=∑n=0∞(−1)n(−x)n2n+1=1−x∑n=0∞(−1)n(−x)2n+12n+1=1−xφ(−x)withφ(t)=∑n=0∞(−1)nt2n+12n+1⇒φ′(t)=∑n=0∞(−t2)n=11+t2⇒φ(t)=arctant+λbutλ=φ(0)=0⇒A(x)=1−xrctan(−x)sofor−1⩽x<0wehaveS(x)=−16+12x−1x1−xarctan(−x)=x−12x−xarctan(−x)−16andS(−1)=S=−2−2arctan(1)−16=π4−16. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-1-lt-x-lt-1-calculate-n-1-x-n-1-x-n-1-x-n-1-Next Next post: Question-163053 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.