Menu Close

find-the-value-of-n-0-1-n-2n-1-2n-3-




Question Number 31982 by abdo imad last updated on 17/Mar/18
find the value of  Σ_(n=0) ^∞   (((−1)^n )/((2n+1)(2n+3))) .
findthevalueofn=0(1)n(2n+1)(2n+3).
Commented by 6123 last updated on 18/Mar/18
Σ_(n=0) ^∞  (((−1)^n )/((2n+1)(2n+3))) = (1/2)Σ_(n=0) ^∞  (−1)^n ((1/(2n+1)) − (1/(2n+3))).  = (1/2)[(1−(1/3)) + ((1/5)−(1/3)) + ((1/5)−(1/7)) + ((1/9)−(1/7)) + ...]  = (1/2)[1 + 2((1/5) + (1/9) + (1/(13)) + ...) − 2((1/3) + (1/7) + (1/(11)) + ...)]  the rest is history.
n=0(1)n(2n+1)(2n+3)=12n=0(1)n(12n+112n+3).=12[(113)+(1513)+(1517)+(1917)+]=12[1+2(15+19+113+)2(13+17+111+)]therestishistory.
Commented by abdo imad last updated on 18/Mar/18
let put S=Σ_(n=0) ^∞   (((−1)^n )/((2n+1)(2n+3))) and   S(x)=Σ_(n=0) ^∞   (x^n /((2n+1)(2n+3)))  we have S(−1)=S but  S(x) =(1/2)(Σ_(n=0) ^∞  ((1/(2n+1)) −(1/(2n+3)))x^n ) ⇒for x≠o  2S(x)= Σ_(n=0) ^∞   (x^n /(2n+1)) −Σ_(n=0) ^∞   (x^n /(2n+3)) but  Σ_(n=0) ^∞   (x^n /(2n+3)) = (1/3) +Σ_(n=1) ^∞   (x^n /(2n+3)) =(1/3) +Σ_(n=0) ^∞  (x^(n−1) /(2n+1))  =(1/3) +(1/x) Σ_(n=0) ^∞   (x^n /(2n+1)) ⇒  2S(x)=−(1/3) +(1−(1/x))Σ_(n=0) ^∞   (x^n /(2n+1)) let calculate for −1≤x<0  A(x)=Σ_(n=0) ^∞   (x^n /(2n+1)) ⇒A(x)=Σ_(n=0) ^∞   (((−1)^n (−x)^n )/(2n+1))  = (1/( (√(−x))))Σ_(n=0) ^∞    (((−1)^n  ((√(−x)))^(2n+1) )/(2n+1))=(1/( (√(−x)))) ϕ((√(−x)) )with  ϕ(t)= Σ_(n=0) ^∞   (((−1)^n  t^(2n+1) )/(2n+1)) ⇒ϕ^′ (t)=Σ_(n=0) ^∞  (−t^2 )^n = (1/(1+t^2 ))  ⇒ϕ(t)= arctant +λ  but λ=ϕ(0)=0 ⇒  A(x)= (1/( (√(−x)))) rctan((√(−x))) so for −1≤x<0 we have  S(x)= −(1/6) +(1/2)((x−1)/x) (1/( (√(−x)))) arctan((√(−x)))  =  ((x−1)/(2x(√(−x)))) arctan((√(−x))) −(1/6)  and  S(−1)= S= ((−2)/(−2)) arctan(1) −(1/6) = (π/4) −(1/6) .
letputS=n=0(1)n(2n+1)(2n+3)andS(x)=n=0xn(2n+1)(2n+3)wehaveS(1)=SbutS(x)=12(n=0(12n+112n+3)xn)forxo2S(x)=n=0xn2n+1n=0xn2n+3butn=0xn2n+3=13+n=1xn2n+3=13+n=0xn12n+1=13+1xn=0xn2n+12S(x)=13+(11x)n=0xn2n+1letcalculatefor1x<0A(x)=n=0xn2n+1A(x)=n=0(1)n(x)n2n+1=1xn=0(1)n(x)2n+12n+1=1xφ(x)withφ(t)=n=0(1)nt2n+12n+1φ(t)=n=0(t2)n=11+t2φ(t)=arctant+λbutλ=φ(0)=0A(x)=1xrctan(x)sofor1x<0wehaveS(x)=16+12x1x1xarctan(x)=x12xxarctan(x)16andS(1)=S=22arctan(1)16=π416.

Leave a Reply

Your email address will not be published. Required fields are marked *