Menu Close

find-the-value-of-n-0-1-n-2n-3-




Question Number 33886 by math khazana by abdo last updated on 26/Apr/18
find the value of Σ_(n=0) ^∞   (((−1)^n )/(2n+3)).
findthevalueofn=0(1)n2n+3.
Commented by math khazana by abdo last updated on 29/Apr/18
changement of indice n=p−1 give  S= Σ_(p=1) ^∞  (((−1)^(p−1) )/(2(p−1)+3)) = Σ_(p=1) ^∞  (((−1)^(p−1) )/(2p+1))  =−Σ_(p=1) ^∞   (((−1)^p )/(2p+1))  = −Σ_(p=0) ^∞  (((−1)^p )/(2p+1)) +1  w(x)= Σ_(p=o) ^∞  (((−1)^p )/(2p+1))x^(2p+1)    with ∣x∣<1  w^′ (x) =Σ_(p=0) ^∞  (−1)^p  x^(2p)  =Σ_(p=0) ^∞ (−x^2 )^p  = (1/(1+x^2 ))  ⇒w(x)= ∫_0 ^x    (dt/(1+t^2 )) +λ  but λ =w(0)=0 ⇒  w(x) = arctanx  S= 1 −w(1) = 1−(π/4)   ★S=1−(π/4)★
changementofindicen=p1giveS=p=1(1)p12(p1)+3=p=1(1)p12p+1=p=1(1)p2p+1=p=0(1)p2p+1+1w(x)=p=o(1)p2p+1x2p+1withx∣<1w(x)=p=0(1)px2p=p=0(x2)p=11+x2w(x)=0xdt1+t2+λbutλ=w(0)=0w(x)=arctanxS=1w(1)=1π4S=1π4

Leave a Reply

Your email address will not be published. Required fields are marked *