Menu Close

find-the-value-of-n-0-1-n-2n-3-




Question Number 33886 by math khazana by abdo last updated on 26/Apr/18
find the value of Σ_(n=0) ^∞   (((−1)^n )/(2n+3)).
$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{3}}. \\ $$
Commented by math khazana by abdo last updated on 29/Apr/18
changement of indice n=p−1 give  S= Σ_(p=1) ^∞  (((−1)^(p−1) )/(2(p−1)+3)) = Σ_(p=1) ^∞  (((−1)^(p−1) )/(2p+1))  =−Σ_(p=1) ^∞   (((−1)^p )/(2p+1))  = −Σ_(p=0) ^∞  (((−1)^p )/(2p+1)) +1  w(x)= Σ_(p=o) ^∞  (((−1)^p )/(2p+1))x^(2p+1)    with ∣x∣<1  w^′ (x) =Σ_(p=0) ^∞  (−1)^p  x^(2p)  =Σ_(p=0) ^∞ (−x^2 )^p  = (1/(1+x^2 ))  ⇒w(x)= ∫_0 ^x    (dt/(1+t^2 )) +λ  but λ =w(0)=0 ⇒  w(x) = arctanx  S= 1 −w(1) = 1−(π/4)   ★S=1−(π/4)★
$${changement}\:{of}\:{indice}\:{n}={p}−\mathrm{1}\:{give} \\ $$$${S}=\:\sum_{{p}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{p}−\mathrm{1}} }{\mathrm{2}\left({p}−\mathrm{1}\right)+\mathrm{3}}\:=\:\sum_{{p}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{p}−\mathrm{1}} }{\mathrm{2}{p}+\mathrm{1}} \\ $$$$=−\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{2}{p}+\mathrm{1}}\:\:=\:−\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{2}{p}+\mathrm{1}}\:+\mathrm{1} \\ $$$${w}\left({x}\right)=\:\sum_{{p}={o}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{2}{p}+\mathrm{1}}{x}^{\mathrm{2}{p}+\mathrm{1}} \:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${w}^{'} \left({x}\right)\:=\sum_{{p}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{p}} \:{x}^{\mathrm{2}{p}} \:=\sum_{{p}=\mathrm{0}} ^{\infty} \left(−{x}^{\mathrm{2}} \right)^{{p}} \:=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\Rightarrow{w}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:+\lambda\:\:{but}\:\lambda\:={w}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow \\ $$$${w}\left({x}\right)\:=\:{arctanx} \\ $$$${S}=\:\mathrm{1}\:−{w}\left(\mathrm{1}\right)\:=\:\mathrm{1}−\frac{\pi}{\mathrm{4}}\: \\ $$$$\bigstar{S}=\mathrm{1}−\frac{\pi}{\mathrm{4}}\bigstar \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *