Menu Close

find-the-value-of-n-0-1-n-3n-1-




Question Number 26565 by abdo imad last updated on 26/Dec/17
find the value of   Σ_(n=0) ^∝   (((−1)^n )/(3n+1))
findthevalueofn=0(1)n3n+1
Commented by abdo imad last updated on 29/Dec/17
let put  s(x)=  Σ_(n=0) ^(n=∝)  (x^(3n+1) /(3n+1)) with  /x/<1  s(^3 (√(x )))  = Σ^∝ _(n=0)   (((^3 (√x))^(3n+1) )/(3n+1))  = ^3 (√x) Σ_(n=0) ^∝  (x^n /(3n+1)) and for x ≠0   Σ_(n=0) ^∝  (x^n /(3n+1))  = ^3 ((√x))^(−1)  s(^3 (√(x))) and  Σ_(n=0) ^∝  (((−1)^n )/(3n+1)) =−s(−1)  s^, (x)=  Σ_(n=0) ^∝  x^(3n)  = (1/(1−x^3 ))⇒ ? s(x)= λ − ∫  (dx/(x^3 −1))  after that we decompose F(x)=  (1/(x^3 −1)) =   (a/(x−1)) + ((bx+c)/(x^2 +x+1))  we find F(x) = (1/(3(x−1)))  − ((x+2)/(3(x^2 +x+1)))  and  ∫F(x)dx= (1/3)ln/x−1/ − (1/6)ln/ x^2 +x+1/ +((√3)/3) arctan((2/( (√3)))(x+(1/2)))  s(x)=λ− ∫/F(x)dx⇒s(0)=0= λ+ ((√3)/3) arctan((1/( (√3))))  λ=−((π(√3))/(18))  and s(x)= −((π(√3))/(18)) −(1/3)ln/x−1/ + (1/6) ln/x^2 +x+1/+ ((√3)/3) arctan((2/( (√3)))(x+(1/2)))  finally   Σ_(n=0) ^∝   (((−1)^n )/(3n+1))= −s(−1)=  ((π(√3))/9) + (1/3) ln2    .
letputs(x)=n=0n=∝x3n+13n+1with/x/<1s(3x)=n=0(3x)3n+13n+1=3xn=0xn3n+1andforx0n=0xn3n+1=3(x)1s(3x)andn=0(1)n3n+1=s(1)s,(x)=n=0x3n=11x3?s(x)=λdxx31afterthatwedecomposeF(x)=1x31=ax1+bx+cx2+x+1wefindF(x)=13(x1)x+23(x2+x+1)andF(x)dx=13ln/x1/16ln/x2+x+1/+33arctan(23(x+12))s(x)=λ/F(x)dxs(0)=0=λ+33arctan(13)λ=π318ands(x)=π31813ln/x1/+16ln/x2+x+1/+33arctan(23(x+12))finallyn=0(1)n3n+1=s(1)=π39+13ln2.

Leave a Reply

Your email address will not be published. Required fields are marked *