Menu Close

find-the-value-of-n-0-artan-n-1-n-1-n-2-n-




Question Number 33717 by prof Abdo imad last updated on 22/Apr/18
find the value of  Σ_(n=0) ^∞  artan( (((√(n+1)) −(√n))/(1+(√(n^2 +n)))) )
findthevalueofn=0artan(n+1n1+n2+n)
Commented by prof Abdo imad last updated on 24/Apr/18
let put S_n = Σ_(k=0) ^n  arctan((((√(k+1)) −(√k))/(1+(√(k^2 +k))))) let put  (√k)=tan(u_k ) ⇔u_k =arctan((√k)) ⇒  S_n = Σ_(k=0) ^n  arctan( ((tan(u_(k+1) ) −tan(u_k ))/(1+tan(u_k )tan(u_(k+1) ))))  =Σ_(k=0) ^n  arctan(tan(u_(k+1) −u_k ))  =Σ_(k=0) ^n (u_(k+1)  −u_k ) =u_(n+1)  −u_0 = arctan((√n)) ⇒  lim_(n→+∞)  S_n = (π/2) .
letputSn=k=0narctan(k+1k1+k2+k)letputk=tan(uk)uk=arctan(k)Sn=k=0narctan(tan(uk+1)tan(uk)1+tan(uk)tan(uk+1))=k=0narctan(tan(uk+1uk))=k=0n(uk+1uk)=un+1u0=arctan(n)limn+Sn=π2.
Commented by prof Abdo imad last updated on 24/Apr/18
S_n =arctan((√(n+1)))
Sn=arctan(n+1)
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Apr/18
Σ_0 ^∞ tan^(−1) ((√(n+1))) −tan^(−1) ((√(n)))  T_(n ) =tan^(−1) ((√(n+1 )))  −tan^(−1) ((√(n)))  T_0 =tan^(−1) ((√(1))) −tan^(−1) (0)  T_1 =tan^(−1) ((√(2))) −tan^(−1) (1)  so S_n =T_0  +T_1 +.....+T_n             =tan^(−1) ((√(n+1)) )−tan^(−1) (0)  when n tends to infinity the sum is  tan^(−1) (∞) −tan^(−1) (0)  =∐/2 −0  =∐/2  ∐ this sign used as pie
0tan1(n+1)tan1(n)Tn=tan1(n+1)tan1(n)T0=tan1(1)tan1(0)T1=tan1(2)tan1(1)soSn=T0+T1+..+Tn=tan1(n+1)tan1(0)whenntendstoinfinitythesumistan1()tan1(0)=/20=/2thissignusedaspie

Leave a Reply

Your email address will not be published. Required fields are marked *