Menu Close

find-the-value-of-n-0-n-3-5-n-




Question Number 61937 by Tawa1 last updated on 12/Jun/19
find the value of     Σ_(n = 0) ^∞   ((n^3  + 5)/(n!))
findthevalueofn=0n3+5n!
Commented by mr W last updated on 12/Jun/19
seems to be 10e.  others should prove.
seemstobe10e.othersshouldprove.
Commented by Tawa1 last updated on 12/Jun/19
Yes,  10e is correct, but workings sir
Yes,10eiscorrect,butworkingssir
Commented by maxmathsup by imad last updated on 12/Jun/19
let S =Σ_(n=0) ^∞  ((n^3 +5)/(n!)) ⇒S =Σ_(n=0) ^∞  (n^3 /(n!)) +5 Σ_(n=0) ^∞  (1/(n!))  we have Σ_(n=0) ^∞  (x^n /(n!)) =e^x    with radius R=∞ ⇒Σ_(n=0) ^∞  (1/(n!)) =e   Σ_(n=0) ^∞  (n^3 /(n!)) =Σ_(n=1) ^∞  (n^2 /((n−1)!)) =Σ_(n=0) ^∞  (((n+1)^2 )/(n!)) =Σ_(n=0) ^∞  ((n^2  +2n+1)/(n!))  =Σ_(n=1) ^∞  (n/((n−1)!)) +2 Σ_(n=1) ^∞  (1/((n−1)!)) +Σ_(n=0) ^∞  (1/(n!))  =Σ_(n=0) ^∞  ((n+1)/(n!)) +2Σ_(n=0) ^∞  (1/(n!)) +e =Σ_(n=1) ^∞  (1/((n−1)!)) +Σ_(n=0) ^∞  (1/(n!)) +3e  =Σ_(n=0) ^∞  (1/(n!)) +4e =5e ⇒ S = 5e +5e =10e .
letS=n=0n3+5n!S=n=0n3n!+5n=01n!wehaven=0xnn!=exwithradiusR=n=01n!=en=0n3n!=n=1n2(n1)!=n=0(n+1)2n!=n=0n2+2n+1n!=n=1n(n1)!+2n=11(n1)!+n=01n!=n=0n+1n!+2n=01n!+e=n=11(n1)!+n=01n!+3e=n=01n!+4e=5eS=5e+5e=10e.
Commented by Tawa1 last updated on 12/Jun/19
God bless you sir
Godblessyousir
Commented by maxmathsup by imad last updated on 12/Jun/19
you are welcome .
youarewelcome.
Answered by mr W last updated on 12/Jun/19
f(x)=Σ_(n=0) ^∞ (((n^3 +5)x^n )/(n!))  =Σ_(n=0) ^∞ ((n^3 x^n )/(n!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=1) ^∞ ((n^2 x^n )/((n−1)!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (((n+1)^2 x^(n+1) )/(n!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (((n^2 +2n+1)x^(n+1) )/(n!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ ((n^2 x^(n+1) )/(n!))+2Σ_(n=0) ^∞ ((nx^(n+1) )/(n!))+Σ_(n=0) ^∞ (x^(n+1) /(n!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=1) ^∞ ((nx^(n+1) )/((n−1)!))+2Σ_(n=1) ^∞ (x^(n+1) /((n−1)!))+xΣ_(n=0) ^∞ (x^n /(n!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (((n+1)x^(n+2) )/(n!))+2Σ_(n=0) ^∞ (x^(n+2) /(n!))+(x+5)Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (((n+1)x^(n+2) )/(n!))+2x^2 Σ_(n=0) ^∞ (x^n /(n!))+(x+5)Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (((n+1)x^(n+2) )/(n!))+(2x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ ((nx^(n+2) )/(n!))+Σ_(n=0) ^∞ (x^(n+2) /(n!))+(2x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=1) ^∞ (x^(n+2) /((n−1)!))+x^2 Σ_(n=0) ^∞ (x^n /(n!))+(2x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (x^(n+3) /(n!))+(3x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =x^3 Σ_(n=0) ^∞ (x^n /(n!))+(3x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =(x^3 +3x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =(x^3 +3x^2 +x+5)e^x     ⇒Σ_(n=0) ^∞ (((n^3 +5)x^n )/(n!))=(x^3 +3x^2 +x+5)e^x   with x=1:  ⇒Σ_(n=0) ^∞ ((n^3 +5)/(n!))=(1^3 +3×1^2 +1+5)e^1 =10e    with x=2:  ⇒Σ_(n=0) ^∞ ((2^n (n^3 +5))/(n!))=(2^3 +3×2^2 +2+5)e^2 =27e^2   with x=(1/2):  ⇒Σ_(n=0) ^∞ (((n^3 +5))/(n!2^n ))=((1/2^3 )+3×(1/2^2 )+(1/2)+5)e^(1/2) =((51(√e))/8)
f(x)=n=0(n3+5)xnn!=n=0n3xnn!+5n=0xnn!=n=1n2xn(n1)!+5n=0xnn!=n=0(n+1)2xn+1n!+5n=0xnn!=n=0(n2+2n+1)xn+1n!+5n=0xnn!=n=0n2xn+1n!+2n=0nxn+1n!+n=0xn+1n!+5n=0xnn!=n=1nxn+1(n1)!+2n=1xn+1(n1)!+xn=0xnn!+5n=0xnn!=n=0(n+1)xn+2n!+2n=0xn+2n!+(x+5)n=0xnn!=n=0(n+1)xn+2n!+2x2n=0xnn!+(x+5)n=0xnn!=n=0(n+1)xn+2n!+(2x2+x+5)n=0xnn!=n=0nxn+2n!+n=0xn+2n!+(2x2+x+5)n=0xnn!=n=1xn+2(n1)!+x2n=0xnn!+(2x2+x+5)n=0xnn!=n=0xn+3n!+(3x2+x+5)n=0xnn!=x3n=0xnn!+(3x2+x+5)n=0xnn!=(x3+3x2+x+5)n=0xnn!=(x3+3x2+x+5)exn=0(n3+5)xnn!=(x3+3x2+x+5)exwithx=1:n=0n3+5n!=(13+3×12+1+5)e1=10ewithx=2:n=02n(n3+5)n!=(23+3×22+2+5)e2=27e2withx=12:n=0(n3+5)n!2n=(123+3×122+12+5)e12=51e8
Commented by mr W last updated on 12/Jun/19
thank you sirs!
thankyousirs!
Commented by MJS last updated on 12/Jun/19
great job!
greatjob!
Commented by Tawa1 last updated on 12/Jun/19
God bless you sir.
Godblessyousir.
Commented by Prithwish sen last updated on 12/Jun/19
excellent sir
excellentsir
Commented by malwaan last updated on 13/Jun/19
FANTASTIC sir !
FANTASTICsir!

Leave a Reply

Your email address will not be published. Required fields are marked *