Menu Close

find-the-value-of-n-1-1-n-1-n-2-n-3-in-terms-of-3-we-give-x-n-1-1-n-x-and-x-gt-1-zeta-function-of-Rieman-




Question Number 26222 by abdo imad last updated on 22/Dec/17
find the value of  Σ_(n=1) ^∝   (1/((n+1)(n+2)n^3 )) in terms of ξ(3)  we give ξ(x)= Σ_(n=1) ^∝   (1/n^x )  and x>1  (zeta function of Rieman)
findthevalueofn=11(n+1)(n+2)n3intermsofξ(3)wegiveξ(x)=n=11nxandx>1(zetafunctionofRieman)
Commented by abdo imad last updated on 24/Dec/17
we decompose the fraction F(x)=  (1/((x+1)(x+2) x^3 )) in simple  elements  F(x)  = (a/(x+1)) + (b/(x+2)) + (c/x) + (d/x^2 ) + (e/x^3 )  a= lim_(x−>−1) (x+1)F(x)= −1  b= lim_(x−>−2 ) (x+2)F(x) = (1/8)  e=lim_(x−>0) x^3 F(x)= (1/2)    ⇒ F(x)= −(1/(x+1))+  (1/(8(x+2)))+ (c/x) +(d/x^2 )  + (1/(2x^3 ))  lim_(x−>∝) xF(x)=0=−1+ (1/8) +c  ⇒c= (7/8)  F(x)= −(1/(x+1)) + (1/(8(x+2))) + (7/(8x)) + (d/x^2 ) + (1/(2x^3 ))  F(1)= (1/6)  =  −(1/2) + (1/(24))  + (7/8)  +d + (1/2)   = ((11)/(12))  +d  ⇒d= (1/6) −((11)/(12))=−(3/4)  F(x)= −(1/(x+1)) + (1/(8(x+2))) + (7/(8x))  − (3/(4x^2 )) + (1/(2x^3 ))  let put S_n = Σ_(k=1) ^(k=n)     (1/((n+1)(n+2) n^3 ))  S_n   = −Σ_(k=1) ^(k=n)   (1/(k+1))+ (1/8) Σ_(k=1) ^(k=n)  (1/(k+2)) +(7/8)Σ_(k=1) ^(k=n)   (1/k)  −(3/4) Σ_(k=1) ^(k=n)  (1/k^2 ) +(1/2) Σ_(k=1) ^(k=n)   (1/n^3 )  but Σ_(k=1) ^(k=n)  (1/(k+1))= Σ_(k=2) ^(k=n+1)   (1/k)  = H_(n+1)   −1  Σ_(k=1) ^(k=n)  (1/k)  =H_n    Σ_(k=1) ^(k=n)  (1/(k+2)) = Σ_(k=3) ^(n+2) (1/k)  = H_(n+2)   −(3/2)  S_n = −H_(n+1)  +1 +(1/8) H_(n+2)   −(3/(16))  + (7/8)  H_n  −(3/4) ξ_n (2) + (1/2)ξ_n (3)  = ((13)/(16 )) + (1/8)  H_(n+2)   +(7/8)  H_n  − H_(n+1)   −(3/4) ξ_n (2) + (1/2)ξ_n (3)  but (1/8) H_(n+2)   +(7/8) H_n   −H_(n+1)   =(1/8)(  ln(n+2) +γ +o((1/n)))+(7/8)(ln(n)+γ+o((1/n))−( ln(n+1)+γ+o((1/n)))  =ln(  (n+2)^(1/8)  .n^(7/8)   )−ln(n+1) +o((1/(n))))  = ln(  (((n+2)^(1/8)  .n^(7/8) )/(n+1))  )−−−>0_(n−>∝)   lim_(n−>∝ ) ξ_n (2)=ξ(2)and lim_(n−>∝) ξ_n  (3)=ξ(3)⇒  lim_(n−>∝ ) S_n   = ((13)/(16)) +(1/2) ξ(3) −(3/4) ξ(2)
wedecomposethefractionF(x)=1(x+1)(x+2)x3insimpleelementsF(x)=ax+1+bx+2+cx+dx2+ex3a=limx>1(x+1)F(x)=1b=limx>2(x+2)F(x)=18e=limx>0x3F(x)=12F(x)=1x+1+18(x+2)+cx+dx2+12x3limx>∝xF(x)=0=1+18+cc=78F(x)=1x+1+18(x+2)+78x+dx2+12x3F(1)=16=12+124+78+d+12=1112+dd=161112=34F(x)=1x+1+18(x+2)+78x34x2+12x3letputSn=k=1k=n1(n+1)(n+2)n3Sn=k=1k=n1k+1+18k=1k=n1k+2+78k=1k=n1k34k=1k=n1k2+12k=1k=n1n3butk=1k=n1k+1=k=2k=n+11k=Hn+11k=1k=n1k=Hnk=1k=n1k+2=k=3n+21k=Hn+232Sn=Hn+1+1+18Hn+2316+78Hn34ξn(2)+12ξn(3)=1316+18Hn+2+78HnHn+134ξn(2)+12ξn(3)but18Hn+2+78HnHn+1=18(ln(n+2)+γ+o(1n))+78(ln(n)+γ+o(1n)(ln(n+1)+γ+o(1n))=ln((n+2)18.n78)ln(n+1)+o(1n))=ln((n+2)18.n78n+1)>0n>∝limn>∝ξn(2)=ξ(2)andlimn>∝ξn(3)=ξ(3)limn>∝Sn=1316+12ξ(3)34ξ(2)
Commented by abdo imad last updated on 25/Dec/17
ξ_n (x)=Σ_(k=1) ^(k=n)  (1/k^x )  with  x>1
ξn(x)=k=1k=n1kxwithx>1

Leave a Reply

Your email address will not be published. Required fields are marked *