find-the-value-of-n-1-1-n-1-n-2-n-3-in-terms-of-3-we-give-x-n-1-1-n-x-and-x-gt-1-zeta-function-of-Rieman- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 26222 by abdo imad last updated on 22/Dec/17 findthevalueof∑n=1∝1(n+1)(n+2)n3intermsofξ(3)wegiveξ(x)=∑n=1∝1nxandx>1(zetafunctionofRieman) Commented by abdo imad last updated on 24/Dec/17 wedecomposethefractionF(x)=1(x+1)(x+2)x3insimpleelementsF(x)=ax+1+bx+2+cx+dx2+ex3a=limx−>−1(x+1)F(x)=−1b=limx−>−2(x+2)F(x)=18e=limx−>0x3F(x)=12⇒F(x)=−1x+1+18(x+2)+cx+dx2+12x3limx−>∝xF(x)=0=−1+18+c⇒c=78F(x)=−1x+1+18(x+2)+78x+dx2+12x3F(1)=16=−12+124+78+d+12=1112+d⇒d=16−1112=−34F(x)=−1x+1+18(x+2)+78x−34x2+12x3letputSn=∑k=1k=n1(n+1)(n+2)n3Sn=−∑k=1k=n1k+1+18∑k=1k=n1k+2+78∑k=1k=n1k−34∑k=1k=n1k2+12∑k=1k=n1n3but∑k=1k=n1k+1=∑k=2k=n+11k=Hn+1−1∑k=1k=n1k=Hn∑k=1k=n1k+2=∑k=3n+21k=Hn+2−32Sn=−Hn+1+1+18Hn+2−316+78Hn−34ξn(2)+12ξn(3)=1316+18Hn+2+78Hn−Hn+1−34ξn(2)+12ξn(3)but18Hn+2+78Hn−Hn+1=18(ln(n+2)+γ+o(1n))+78(ln(n)+γ+o(1n)−(ln(n+1)+γ+o(1n))=ln((n+2)18.n78)−ln(n+1)+o(1n))=ln((n+2)18.n78n+1)−−−>0n−>∝limn−>∝ξn(2)=ξ(2)andlimn−>∝ξn(3)=ξ(3)⇒limn−>∝Sn=1316+12ξ(3)−34ξ(2) Commented by abdo imad last updated on 25/Dec/17 ξn(x)=∑k=1k=n1kxwithx>1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 3-ln-x-2-dx-Next Next post: Question-157292 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.