Menu Close

find-the-value-of-n-1-1-n-2-n-1-2n-1-




Question Number 33588 by abdo imad last updated on 19/Apr/18
find the value of  Σ_(n=1) ^∞   (1/(n^2 (n+1)(2n+1))) .
findthevalueofn=11n2(n+1)(2n+1).
Commented by abdo imad last updated on 20/Apr/18
let put S_n =Σ_(k=1) ^n     (1/(k^2 (k+1)(2k+1))) and let decompose  F(x)= (1/(x^2 (x+1)(2x+1)))  F(x)= (a/x) +(b/x^2 ) +(c/(x+1)) +(d/(2x+1))  b=lim_(x→0) x^2 F(x)= 1  c=lim_(x→−1) (x+1)F(x)= (1/(−1)) =−1  d =lim_(x→−(1/2)) (2x+1)F(x) = (1/((1/4).(1/2))) =8 ⇒  F(x)= (a/x) +(1/x^2 ) −(1/(x+1)) +(8/(2x+1))  F(1)=(1/6) = a +1 −(1/2) +(8/3) =a +(1/2) +(8/3) ⇒  1=6a +3 +16=6a +19 ⇒6a=−18 ⇒a=−3 ⇒  F(x)=−(3/x) +(1/x^2 ) −(1/(x+1)) +(8/(2x+1))  S_n =−3 Σ_(k=1) ^n  (1/k)  +Σ_(k=1) ^n  (1/k^2 ) −Σ_(k=1) ^n (1/(k+1)) +8 Σ_(k=1) ^n  (1/(2k+1))  Σ_(k=1) ^n  (1/k)=H_n   Σ_(k=1) ^n  (1/k^2 )  =ξ_n (2)  (  ξ_n (x)=Σ_(k=1) ^n  (1/k^x ))  Σ_(k=1) ^n  (1/(k+1)) =Σ_(k=2) ^(n+1)  (1/k) =H_(n+1)   −1  Σ_(k=1) ^n   (1/(2k+1)) =(1/3) +(1/5) +......+(1/(2n+1))  =1+(1/2) +(1/3) +(1/4) +(1/5) +...+(1/(2n)) +(1/(2n+1)) −1 −(1/2)(1 +(1/2)+...+(1/n))  =H_(2n+1)   −(1/2) H_n  −1 ⇒  S_n =−3 H_(n )   +ξ_n (2) −H_(n+1)  +1  +8 H_(2n+1)  −4H_n  −8  S_n  =−7H_n  −H_(n+1)   +8 H_(2n+1)   −7  +ξ_n (2)⇒  S_n =−7(ln(n) +γ +o((1/n)))−(ln(n+1) +γ +o((1/n)))  +8(ln(2n+1) +γ +o((1/n))) +ξ_n (2) −7  =−ln(n^7 (n+1)) +ln((2n+1)^8 )  +ξ_n (2)−7  =ln ((((2n+1)^8 )/(n^8  +n^7 ))) + ξ_n (2) −7 ⇒  lim_(n→+∞)  S_n   =ln(2^8 ) +ξ(2) −7 = 8ln(2) +(π^2 /6) −7 .so  Σ_(n=1) ^∞      (1/(n^2 (n+1)(2n+1))) = 8ln(2) +(π^2 /6) −7  .
letputSn=k=1n1k2(k+1)(2k+1)andletdecomposeF(x)=1x2(x+1)(2x+1)F(x)=ax+bx2+cx+1+d2x+1b=limx0x2F(x)=1c=limx1(x+1)F(x)=11=1d=limx12(2x+1)F(x)=114.12=8F(x)=ax+1x21x+1+82x+1F(1)=16=a+112+83=a+12+831=6a+3+16=6a+196a=18a=3F(x)=3x+1x21x+1+82x+1Sn=3k=1n1k+k=1n1k2k=1n1k+1+8k=1n12k+1k=1n1k=Hnk=1n1k2=ξn(2)(ξn(x)=k=1n1kx)k=1n1k+1=k=2n+11k=Hn+11k=1n12k+1=13+15++12n+1=1+12+13+14+15++12n+12n+1112(1+12++1n)=H2n+112Hn1Sn=3Hn+ξn(2)Hn+1+1+8H2n+14Hn8Sn=7HnHn+1+8H2n+17+ξn(2)Sn=7(ln(n)+γ+o(1n))(ln(n+1)+γ+o(1n))+8(ln(2n+1)+γ+o(1n))+ξn(2)7=ln(n7(n+1))+ln((2n+1)8)+ξn(2)7=ln((2n+1)8n8+n7)+ξn(2)7limn+Sn=ln(28)+ξ(2)7=8ln(2)+π267.son=11n2(n+1)(2n+1)=8ln(2)+π267.
Answered by sma3l2996 last updated on 19/Apr/18
Σ_(n=1) ^∞ (1/(n^2 (n+1)(2n+1)))=Σ_(n=1) ^∞ ((a/n)+(b/n^2 )+(c/(n+1))+(d/(2n+1)))  with  a=−3 ;  b=1 ; c=−1 ;  d=8  so Σ_(n=1) ^∞ (1/(n^2 (n+1)(2n+1)))=Σ_(n=1) ^∞ (((−3)/n)+(1/n^2 )−(1/(n+1))+(8/(2n+1)))  let′s calculate  A=Σ_(n=1) ^∞ (8/(2n+1))  A=8((1/3)+(1/5)+(1/7)+...)=8[((1/3)+(1/5)+...)+((1/2)+(1/4)+(1/6)+...)−((1/2)+(1/4)+(1/6)+...)]  =8[Σ_(n=2) ^∞ (1/n)−(1/2)(1+(1/2)+(1/3)+(1/4)+...)]  =8(Σ_(n=2) ^∞ (1/n)−(1/2)Σ_(n=2) ^∞ (1/n)−(1/2))=4Σ_(n=2) ^∞ (1/n)−4  so  Σ_(n=1) ^∞ ((8/(2n+1))−(3/n)−(1/(n+1)))=4Σ_(n=2) ^∞ (1/n)−4−3(Σ_(n=2) ^∞ (1/n)+(1/1))−Σ_(n=1) ^∞ (1/(n+1))  let  k=n+1  Σ_(n=1) ^∞ ((8/(2n+1))−(3/n)−(1/(n+1)))=Σ_(n=2) ^∞ (1/n)−7−Σ_(k=2) ^∞ (1/k)=−7  we  know that  ζ(2)=Σ_(n=1) ^∞ (1/n^2 )=(π^2 /6)  (ζ (x)  is Riemann zeta function)  As results  Σ_(n=1) ^∞ (1/(n^2 (n+1)(2n+1)))=(π^2 /6)−7
n=11n2(n+1)(2n+1)=n=1(an+bn2+cn+1+d2n+1)witha=3;b=1;c=1;d=8son=11n2(n+1)(2n+1)=n=1(3n+1n21n+1+82n+1)letscalculateA=n=182n+1A=8(13+15+17+)=8[(13+15+)+(12+14+16+)(12+14+16+)]=8[n=21n12(1+12+13+14+)]=8(n=21n12n=21n12)=4n=21n4son=1(82n+13n1n+1)=4n=21n43(n=21n+11)n=11n+1letk=n+1n=1(82n+13n1n+1)=n=21n7k=21k=7weknowthatζ(2)=n=11n2=π26(ζ(x)isRiemannzetafunction)Asresultsn=11n2(n+1)(2n+1)=π267
Commented by abdo imad last updated on 20/Apr/18
sir sma3l you have commited a error of calculus because  the serie is positif  but the value (π^2 /6) −7 is negative but  nevermind your method is correct...
sirsma3lyouhavecommitedaerrorofcalculusbecausetheserieispositifbutthevalueπ267isnegativebutnevermindyourmethodiscorrect
Commented by sma3l2996 last updated on 20/Apr/18
That what I just saw. There is an error in my work.  Can you check my work please?
ThatwhatIjustsaw.Thereisanerrorinmywork.Canyoucheckmyworkplease?
Commented by abdo imad last updated on 20/Apr/18
i advise you sir sma3l to use the harmonic sequence H_n   took a look in my method....
iadviseyousirsma3ltousetheharmonicsequenceHntookalookinmymethod.
Commented by sma3l2996 last updated on 20/Apr/18
Ok thank you
Okthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *