Question Number 33588 by abdo imad last updated on 19/Apr/18

Commented by abdo imad last updated on 20/Apr/18

Answered by sma3l2996 last updated on 19/Apr/18
![Σ_(n=1) ^∞ (1/(n^2 (n+1)(2n+1)))=Σ_(n=1) ^∞ ((a/n)+(b/n^2 )+(c/(n+1))+(d/(2n+1))) with a=−3 ; b=1 ; c=−1 ; d=8 so Σ_(n=1) ^∞ (1/(n^2 (n+1)(2n+1)))=Σ_(n=1) ^∞ (((−3)/n)+(1/n^2 )−(1/(n+1))+(8/(2n+1))) let′s calculate A=Σ_(n=1) ^∞ (8/(2n+1)) A=8((1/3)+(1/5)+(1/7)+...)=8[((1/3)+(1/5)+...)+((1/2)+(1/4)+(1/6)+...)−((1/2)+(1/4)+(1/6)+...)] =8[Σ_(n=2) ^∞ (1/n)−(1/2)(1+(1/2)+(1/3)+(1/4)+...)] =8(Σ_(n=2) ^∞ (1/n)−(1/2)Σ_(n=2) ^∞ (1/n)−(1/2))=4Σ_(n=2) ^∞ (1/n)−4 so Σ_(n=1) ^∞ ((8/(2n+1))−(3/n)−(1/(n+1)))=4Σ_(n=2) ^∞ (1/n)−4−3(Σ_(n=2) ^∞ (1/n)+(1/1))−Σ_(n=1) ^∞ (1/(n+1)) let k=n+1 Σ_(n=1) ^∞ ((8/(2n+1))−(3/n)−(1/(n+1)))=Σ_(n=2) ^∞ (1/n)−7−Σ_(k=2) ^∞ (1/k)=−7 we know that ζ(2)=Σ_(n=1) ^∞ (1/n^2 )=(π^2 /6) (ζ (x) is Riemann zeta function) As results Σ_(n=1) ^∞ (1/(n^2 (n+1)(2n+1)))=(π^2 /6)−7](https://www.tinkutara.com/question/Q33600.png)
Commented by abdo imad last updated on 20/Apr/18

Commented by sma3l2996 last updated on 20/Apr/18

Commented by abdo imad last updated on 20/Apr/18

Commented by sma3l2996 last updated on 20/Apr/18
