find-the-value-of-n-1-1-n-n-1-n-2-n-3- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 26877 by abdo imad last updated on 30/Dec/17 findthevalueof∑n=1∝1n(n+1)(n+2)(n+3). Commented by abdo imad last updated on 31/Dec/17 letdecomposeF(x)=1x(x+1)(x+2)(x+3)F(x)=ax+bx+1+cx+2+dx+3a=limx−>0xF(x)=16,b=limx−>−1(x+1)F(x)=−12c=limx−>−2(x+2)F(x)=12,d=limx−>−3(x+3)F(x)=−16⇒F(x)=16x−12(x+1)+12(x+2)−16(x+3)letputSn=∑k=1n1k(k+1)(k+2)(k+3)Sn=16∑k=1n1k−12∑k=1n1k+1+12∑k=1k=n1k+2−16∑k=1n1k+3but∑k=1n1k=Hn∑k=1k=n1k+1=∑k=2n+11k=Hn+1−1∑k=1k=n1k+2=∑k=3n+21k=Hn+2−32∑k=1k=n1k+3=∑k=4n+31k=Hn+3−116Sn=16Hn−12(Hn+1−1)+12(Hn+2−32)−16(Hn+3−116)=16(Hn−Hn+3)+12(Hn+2−Hn+1)+12−34+1136butlimn−>∝(Hn−Hn+3)=0andlimn−>∝(Hn+2−Hn+1)=0⇒limn−>∝Sn=−14+1136=−9+1136=236=118. Commented by abdo imad last updated on 31/Dec/17 thisisthemethodofHn Answered by prakash jain last updated on 31/Dec/17 1n(n+1)(n+2)(n+3)=An+Bn+1+Cn+2+Dn+31=A(n+1)(n+2)(n+3)+Bn(n+2)(n+3)+Cn(n+1)(n+3)+Dn(n+1)(n+2)n=0⇒A=16n=−1⇒B=−12n=−2⇒C=12n=−3⇒D=−16=16n−12(n+1)+12(n+2)−16(n+3)16.1−12⋅2+12⋅3−16⋅416.2−12⋅3+12⋅4−16⋅516.3−12⋅4+12⋅5−16⋅616.4−12⋅5+12⋅6−16⋅716(m−2)−22(m−1)+12(m)−16(m+1)16(m−1)−22(m)+12(m+1)−16(m+2)16(m)−22(m+1)+12(m+2)−16(m+3)sumtomterm16.1+16.2+16.3−12.2+12(m+2)−16(m+1)−16(m+2)−16(m+3)=118+3(m+1)(m+3)−(m+2)(m+3)−(m+1)(m+3)−(m+1)(m+2)6(m+1)(m+2)(m+3)=118+2(m+1)(m+3)−(m+2)(m+3)−(m+1)(m+2)6(m+1)(m+2)(m+3)=118−13(m+1)(m+2)(m+3)sumtoinfinity=16⋅1+16.2+16.3−12.2=6+3+2−96⋅2⋅3=118 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: What-are-the-coordinates-of-the-points-on-the-curve-x-2-y-2-16-which-nearest-to-0-6-Next Next post: cscx-cos-2x-2cos-2-x-dx-pleas-sir-help-me- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.