Menu Close

find-the-value-of-n-1-1-n-n-1-n-2-n-3-




Question Number 26877 by abdo imad last updated on 30/Dec/17
find the value of  Σ_(n=1) ^∝  (1/(n(n+1)(n+2)(n+3)))  .
findthevalueofn=11n(n+1)(n+2)(n+3).
Commented by abdo imad last updated on 31/Dec/17
let decompose F(x)= (1/(x(x+1)(x+2)(x+3)))  F(x)= (a/x) +(b/(x+1)) +(c/(x+2)) +(d/(x+3))  a=lim_(x−>0) xF(x)=(1/6),b= lim_(x−>−1)  (x+1)F(x)=−(1/2)  c= lim_(x−>−2)   (x+2)F(x)= (1/2) ,  d= lim_(x−>−3)  (x+3)F(x)= −(1/6)  ⇒ F(x) = (1/(6x)) − (1/(2(x+1))) + (1/(2(x+2))) −(1/(6(x+3)))  let put  S_n   = Σ_(k=1) ^n (1/(k(k+1)(k+2)(k+3)))   S_n = (1/6) Σ_(k=1) ^n  (1/k)−(1/2) Σ_(k=1) ^n (1/(k+1)) +(1/2) Σ_(k=1) ^(k=n)  (1/(k+2)) −(1/6) Σ_(k=1) ^n (1/(k+3))    but  Σ_(k=1) ^n (1/k)=H_n   Σ_(k=1) ^(k=n) (1/(k+1))= Σ_(k=2) ^(n+1) (1/k) =H_(n+1)   −1  Σ_(k=1) ^(k=n) (1/(k+2))= Σ_(k=3) ^(n+2)  (1/k)= H_(n+2)  −(3/2)  Σ_(k=1) ^(k=n) (1/(k+3))= Σ_(k=4) ^(n+3)  (1/k) = H_(n+3)  −((11)/6)  S_n  =(1/6) H_n   −(1/2)( H_(n+1)  −1) +(1/2)( H_(n+2)  −(3/2))−(1/6)(H_(n+3) −((11)/6))  =(1/6)(H_n  −H_(n+3) )+(1/2)( H_(n+2) −H_(n+1) ) +(1/2)−(3/4)+((11)/(36))  but lim_(n−>∝) (H_n −H_(n+3) )=0 and lim_(n−>∝) ( H_(n+2)  −H_(n+1) )=0  ⇒lim_(n−>∝) S_n = −(1/4) +((11)/(36))=((−9+11)/(36))= (2/(36)) =(1/(18)) .
letdecomposeF(x)=1x(x+1)(x+2)(x+3)F(x)=ax+bx+1+cx+2+dx+3a=limx>0xF(x)=16,b=limx>1(x+1)F(x)=12c=limx>2(x+2)F(x)=12,d=limx>3(x+3)F(x)=16F(x)=16x12(x+1)+12(x+2)16(x+3)letputSn=k=1n1k(k+1)(k+2)(k+3)Sn=16k=1n1k12k=1n1k+1+12k=1k=n1k+216k=1n1k+3butk=1n1k=Hnk=1k=n1k+1=k=2n+11k=Hn+11k=1k=n1k+2=k=3n+21k=Hn+232k=1k=n1k+3=k=4n+31k=Hn+3116Sn=16Hn12(Hn+11)+12(Hn+232)16(Hn+3116)=16(HnHn+3)+12(Hn+2Hn+1)+1234+1136butlimn>∝(HnHn+3)=0andlimn>∝(Hn+2Hn+1)=0limn>∝Sn=14+1136=9+1136=236=118.
Commented by abdo imad last updated on 31/Dec/17
this is the method of H_n
thisisthemethodofHn
Answered by prakash jain last updated on 31/Dec/17
(1/(n(n+1)(n+2)(n+3)))  =(A/n)+(B/(n+1))+(C/(n+2))+(D/(n+3))  1=A(n+1)(n+2)(n+3)+Bn(n+2)(n+3)         +Cn(n+1)(n+3)+Dn(n+1)(n+2)  n=0⇒A=(1/6)  n=−1⇒B=−(1/2)  n=−2⇒C=(1/2)  n=−3⇒D=−(1/6)  =(1/(6n))−(1/(2(n+1)))+(1/(2(n+2)))−(1/(6(n+3)))  (1/(6.1))−(1/(2∙2))+(1/(2∙3))−(1/(6∙4))  (1/(6.2))−(1/(2∙3))+(1/(2∙4))−(1/(6∙5))  (1/(6.3))−(1/(2∙4))+(1/(2∙5))−(1/(6∙6))  (1/(6.4))−(1/(2∙5))+(1/(2∙6))−(1/(6∙7))    (1/(6(m−2)))−(2/(2(m−1)))+(1/(2(m)))−(1/(6(m+1)))  (1/(6(m−1)))−(2/(2(m)))+(1/(2(m+1)))−(1/(6(m+2)))  (1/(6(m)))−(2/(2(m+1)))+(1/(2(m+2)))−(1/(6(m+3)))  sum to m term  (1/(6.1))+(1/(6.2))+(1/(6.3))−(1/(2.2))  + (1/(2(m+2)))−(1/(6(m+1)))−(1/(6(m+2)))−(1/(6(m+3)))  =(1/(18))+((3(m+1)(m+3)−(m+2)(m+3)−(m+1)(m+3)−(m+1)(m+2))/(6(m+1)(m+2)(m+3)))  =(1/(18))+((2(m+1)(m+3)−(m+2)(m+3)−(m+1)(m+2))/(6(m+1)(m+2)(m+3)))  =(1/(18))−(1/(3(m+1)(m+2)(m+3)))    sum to infinity=    (1/(6∙1))+(1/(6.2))+(1/(6.3))−(1/(2.2))=((6+3+2−9)/(6∙2∙3))=(1/(18))
1n(n+1)(n+2)(n+3)=An+Bn+1+Cn+2+Dn+31=A(n+1)(n+2)(n+3)+Bn(n+2)(n+3)+Cn(n+1)(n+3)+Dn(n+1)(n+2)n=0A=16n=1B=12n=2C=12n=3D=16=16n12(n+1)+12(n+2)16(n+3)16.1122+12316416.2123+12416516.3124+12516616.4125+12616716(m2)22(m1)+12(m)16(m+1)16(m1)22(m)+12(m+1)16(m+2)16(m)22(m+1)+12(m+2)16(m+3)sumtomterm16.1+16.2+16.312.2+12(m+2)16(m+1)16(m+2)16(m+3)=118+3(m+1)(m+3)(m+2)(m+3)(m+1)(m+3)(m+1)(m+2)6(m+1)(m+2)(m+3)=118+2(m+1)(m+3)(m+2)(m+3)(m+1)(m+2)6(m+1)(m+2)(m+3)=11813(m+1)(m+2)(m+3)sumtoinfinity=161+16.2+16.312.2=6+3+29623=118

Leave a Reply

Your email address will not be published. Required fields are marked *