find-the-value-of-n-1-1-n-n-2-n-1-3- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 63665 by mathmax by abdo last updated on 07/Jul/19 findthevalueof∑n=1∞(−1)nn2(n+1)3 Commented by mathmax by abdo last updated on 07/Jul/19 letdecomposeF(x)=1x2(x+1)3⇒F(x)=ax+bx2+cx+1+d(x+1)2+e(x+1)3b=limx→0x2F(x)=1e=limx→−1(x+1)3F(x)=1⇒F(x)=ax+1x2+cx+1+d(x+1)2+1(x+1)3F(x)−1x2=1x2{1(x+1)3−1}=1x2{1−x3−3x2−3x−1(x+1)3}=−x3+3x2+3xx2(x+1)3=−x2+3x+3x(x+1)3=ax+cx+1+d(x+1)2+1(x+1)3⇒−x2+3x+3(x+1)3=a+cxx+1+dx(x+1)2+x(x+1)3(x→0)⇒a=−3⇒F(x)=−3x+1x2+cx+1+d(x+1)2+1(x+1)3limx→+∞xF(x)=0=−3+c⇒c=3⇒F(x)=−3x+1x2+3x+1+d(x+1)2+1(x+1)3F(−2)=−14=32+14−3+d−1=74−4+d⇒d=−14−74+4=−2+4=2⇒F(x)=−3x+1x2+3x+1+2(x+1)2+1(x+1)3S=∑n=1∞(−1)nF(n)=−3∑n=1∞(−1)nn+∑n=1∞(−1)nn2+2∑n=1∞(−1)n(n+1)2+∑n=1∞(−1)n(n+1)3wehave∑n=1∞xnn=−ln(1−x)if∣x∣<1⇒∑n=1∞(−1)nn=−ln(2)ifδ(x)=∑n=1∞(−1)nnxwehaveprovedthatδ(x)=(21−x−1)ξ(x)⇒∑n=1∞(−1)nn2=(2−1−1)ξ(2)=−12π26=−π212∑n=1∞(−1)n(n+1)2=∑n=2∞(−1)n−1n2=−∑n=2∞(−1)nn2=−{−π212+1}=π212−1also∑n=1∞(−1)n(n+1)3=∑n=2∞(−1)n−1n3=−∑n=2∞(−1)nn3=−{δ(3)+1}=−(2−2−1)ξ(3)−1=−(−34)ξ(3)−1=34ξ(3)−1⇒S=3ln(2)−π212+2π212−2+34ξ(3)−1=3ln(2)+π212+34ξ(3)−3. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-0-t-a-1-x-t-n-dt-with-0-lt-a-lt-1-and-x-gt-0-and-n-2-1-determine-a-explicit-form-of-f-x-2-calculate-g-x-0-t-a-1-x-t-n-2-dt-3-find-f-k-x-at-forNext Next post: 1-calculate-0-2pi-dt-cost-x-sint-wih-x-from-R-2-calculate-0-2pi-sint-cost-xsint-2-dt-3-find-the-value-of-0-2pi-dt-cos-2t-2sin-2t- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.