Menu Close

find-the-value-of-n-1-1-n-n-2-n-1-3-




Question Number 63665 by mathmax by abdo last updated on 07/Jul/19
find the value of Σ_(n=1) ^∞   (((−1)^n )/(n^2 (n+1)^3 ))
findthevalueofn=1(1)nn2(n+1)3
Commented by mathmax by abdo last updated on 07/Jul/19
let decompose F(x)=(1/(x^2 (x+1)^3 )) ⇒  F(x)=(a/x) +(b/x^2 ) +(c/(x+1)) +(d/((x+1)^2 )) +(e/((x+1)^3 ))  b=lim_(x→0) x^2 F(x)=1  e =lim_(x→−1) (x+1)^3 F(x)=1 ⇒F(x)=(a/x) +(1/x^2 ) +(c/(x+1)) +(d/((x+1)^2 )) +(1/((x+1)^3 ))  F(x)−(1/x^2 ) =(1/x^2 ){(1/((x+1)^3 )) −1} =(1/x^2 ){((1−x^3 −3x^2 −3x−1)/((x+1)^3 ))}  =−((x^3  +3x^2 +3x)/(x^2 (x+1)^3 )) =−((x^2  +3x +3)/(x(x+1)^3 )) =(a/x) +(c/(x+1)) +(d/((x+1)^2 )) +(1/((x+1)^3 )) ⇒  −((x^2 +3x +3)/((x+1)^3 )) =a +((cx)/(x+1)) +(dx/((x+1)^2 )) +(x/((x+1)^3 )) (x→0) ⇒  a =−3 ⇒F(x) =−(3/x) +(1/x^2 ) +(c/(x+1)) +(d/((x+1)^2 )) +(1/((x+1)^3 ))  lim_(x→+∞) xF(x)=0 =−3 +c ⇒c=3 ⇒  F(x)=−(3/x) +(1/x^2 ) +(3/(x+1)) +(d/((x+1)^2 )) +(1/((x+1)^3 ))  F(−2) =−(1/4) =(3/2) +(1/4) −3 +d −1 =(7/4)−4 +d ⇒  d =−(1/4)−(7/4) +4 =−2+4 =2 ⇒  F(x)=((−3)/x) +(1/x^2 ) +(3/(x+1)) +(2/((x+1)^2 )) +(1/((x+1)^3 ))  S =Σ_(n=1) ^∞ (−1)^n F(n) =−3 Σ_(n=1) ^∞  (((−1)^n )/n) +Σ_(n=1) ^∞  (((−1)^n )/n^2 )  +2Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 )) +Σ_(n=1) ^∞  (((−1)^n )/((n+1)^3 ))  we have   Σ_(n=1) ^∞  (x^n /n) =−ln(1−x)  if ∣x∣<1 ⇒Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  if δ(x) =Σ_(n=1) ^∞  (((−1)^n )/n^x )    we have proved that δ(x)=(2^(1−x) −1)ξ(x)  ⇒Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(2^(−1) −1)ξ(2) =−(1/2)(π^2 /6) =−(π^2 /(12))  Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^2 ) =−Σ_(n=2) ^∞  (((−1)^n )/n^2 )  =−{−(π^2 /(12)) +1}=(π^2 /(12)) −1  also  Σ_(n=1) ^∞  (((−1)^n )/((n+1)^3 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^3 ) =−Σ_(n=2) ^∞  (((−1)^n )/n^3 )  =−{ δ(3) +1} =−(2^(−2) −1)ξ(3)−1 =−(−(3/4))ξ(3)−1  =(3/4)ξ(3)−1 ⇒  S = 3ln(2)−(π^2 /(12)) +((2π^2 )/(12)) −2 +(3/4)ξ(3)−1  =3ln(2) +(π^2 /(12)) +(3/4)ξ(3)−3 .
letdecomposeF(x)=1x2(x+1)3F(x)=ax+bx2+cx+1+d(x+1)2+e(x+1)3b=limx0x2F(x)=1e=limx1(x+1)3F(x)=1F(x)=ax+1x2+cx+1+d(x+1)2+1(x+1)3F(x)1x2=1x2{1(x+1)31}=1x2{1x33x23x1(x+1)3}=x3+3x2+3xx2(x+1)3=x2+3x+3x(x+1)3=ax+cx+1+d(x+1)2+1(x+1)3x2+3x+3(x+1)3=a+cxx+1+dx(x+1)2+x(x+1)3(x0)a=3F(x)=3x+1x2+cx+1+d(x+1)2+1(x+1)3limx+xF(x)=0=3+cc=3F(x)=3x+1x2+3x+1+d(x+1)2+1(x+1)3F(2)=14=32+143+d1=744+dd=1474+4=2+4=2F(x)=3x+1x2+3x+1+2(x+1)2+1(x+1)3S=n=1(1)nF(n)=3n=1(1)nn+n=1(1)nn2+2n=1(1)n(n+1)2+n=1(1)n(n+1)3wehaven=1xnn=ln(1x)ifx∣<1n=1(1)nn=ln(2)ifδ(x)=n=1(1)nnxwehaveprovedthatδ(x)=(21x1)ξ(x)n=1(1)nn2=(211)ξ(2)=12π26=π212n=1(1)n(n+1)2=n=2(1)n1n2=n=2(1)nn2={π212+1}=π2121alson=1(1)n(n+1)3=n=2(1)n1n3=n=2(1)nn3={δ(3)+1}=(221)ξ(3)1=(34)ξ(3)1=34ξ(3)1S=3ln(2)π212+2π2122+34ξ(3)1=3ln(2)+π212+34ξ(3)3.

Leave a Reply

Your email address will not be published. Required fields are marked *