Menu Close

find-the-value-of-n-1-1-n-n-3-n-1-4-




Question Number 60499 by abdo mathsup 649 cc last updated on 21/May/19
find the value of Σ_(n=1) ^∞     (((−1)^n )/(n^3 (n+1)^4 ))
findthevalueofn=1(1)nn3(n+1)4
Commented by maxmathsup by imad last updated on 30/May/19
let decompose F(x) =(1/(x^3 (x+1)^4 ))  we have   F(x) =Σ_(i=1) ^3  (a_i /x^i ) +Σ_(i=1) ^4  (b_i /((x+1)^i ))  let determine D_2 (0) for  f(x) =(x+1)^(−4)   we have f(x)=f(0) +((f^′ (0))/(1!)) x +((f^((2)) (0))/(2!)) x^2  +(x^3 /(3!))ξ(x)  f(0) =1  ,f^′ (x) =−4(x+1)^(−5)  ⇒f^′ (0) =−4 ,f^((2)) (x)=20 (x+1)^(−6) ⇒  f^((2)) (0) =20 ⇒f(x)=1−4x +10x^2  +x^3  ξ(x) ⇒  ((f(x))/x^3 ) =(1/x^3 ) −(4/x^2 ) +((10)/x) +ξ(x) ⇒a_1 =10 , a_2 =−4 , a_3 =−1 also we have  F(x) =_(x+1=t)    (1/((t−1)^3 t^4 ))  let find  D_3 (0)  for g(t) =(t−1)^(−3)   g(t) =g(0) +((g^′ (0))/(1!)) t +((g^((2)) (0))/(2!)) t^2  +((g^((3)) (0))/(3!))t^3  +(t^4 /(4!))ξ(t)  g(0) =−1 , g^′ (t) =−3(t−1)^(−4)  ⇒g^′ (0) =−3  g^((2)) (t) =12(t−1)^(−5) ⇒g^((2)) (0) =−12  , g^((3)) (t) =−60(t−1)^(−6)  ⇒  g^((3)) (0) =−60 ⇒  g(t) =−1 −3t −6t^2  −10 t^3  +(t^4 /(4!))ξ(t) ⇒  ((g(t))/t^4 ) =−(1/t^4 ) −(3/t^3 ) −(6/t^2 ) −((10)/t) +(1/(4!))ξ(t)  =−(1/((x+1)^4 )) −(3/((x+1)^3 )) −(6/((x+1)^2 )) −((10)/((x+1))) +(1/(4!))ξ(x+1) ⇒  b_1 =−10 , b_2 =−6 , b_3 =−3 , b_4 =−1 and   F(x) =((10)/x) −(4/x^2 ) −(1/x^3 ) −((10)/((x+1))) −(6/((x+1)^2 )) −(3/((x+1)^3 )) −(1/((x+1)^4 )) ⇒  Σ_(n=1) ^∞  (((−1)^n )/(n^3 (n+1)^4 )) =Σ_(n=1) ^∞ (−1)^n F(n)  =10 Σ_(n=1) ^∞  (((−1)^n )/n) −4 Σ_(n=1) ^∞  (((−1)^n )/n^2 ) −10 Σ_(n=1) ^∞  (((−1)^n )/(n+1)) −6Σ_(n=1) ^∞ (((−1)^n )/((n+1)^2 ))  −3 Σ_(n=1) ^∞  (((−1)^n )/((n+1)^3 )) −Σ_(n=1) ^∞  (((−1)^n )/n^4 )
letdecomposeF(x)=1x3(x+1)4wehaveF(x)=i=13aixi+i=14bi(x+1)iletdetermineD2(0)forf(x)=(x+1)4wehavef(x)=f(0)+f(0)1!x+f(2)(0)2!x2+x33!ξ(x)f(0)=1,f(x)=4(x+1)5f(0)=4,f(2)(x)=20(x+1)6f(2)(0)=20f(x)=14x+10x2+x3ξ(x)f(x)x3=1x34x2+10x+ξ(x)a1=10,a2=4,a3=1alsowehaveF(x)=x+1=t1(t1)3t4letfindD3(0)forg(t)=(t1)3g(t)=g(0)+g(0)1!t+g(2)(0)2!t2+g(3)(0)3!t3+t44!ξ(t)g(0)=1,g(t)=3(t1)4g(0)=3g(2)(t)=12(t1)5g(2)(0)=12,g(3)(t)=60(t1)6g(3)(0)=60g(t)=13t6t210t3+t44!ξ(t)g(t)t4=1t43t36t210t+14!ξ(t)=1(x+1)43(x+1)36(x+1)210(x+1)+14!ξ(x+1)b1=10,b2=6,b3=3,b4=1andF(x)=10x4x21x310(x+1)6(x+1)23(x+1)31(x+1)4n=1(1)nn3(n+1)4=n=1(1)nF(n)=10n=1(1)nn4n=1(1)nn210n=1(1)nn+16n=1(1)n(n+1)23n=1(1)n(n+1)3n=1(1)nn4
Commented by maxmathsup by imad last updated on 30/May/19
Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(1/4)Σ_(n=1) ^∞  (1/n^2 ) −Σ_(n=0) ^∞  (1/((2n+1)^2 ))  Σ_(n=1) ^∞  (1/n^2 ) =(1/4) Σ_(n=1) ^∞ (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒Σ_(n=0) ^∞ (1/((2n+1)^2 )) =(3/4)ξ(2)  =(3/4) (π^2 /6) =(π^2 /8) ⇒Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(π^2 /(24)) −(π^2 /8) =((−2π^2 )/(24)) =−(π^2 /(12))  Σ_(n=1) ^∞   (((−1)^n )/(n+1)) =Σ_(n=2) ^∞   (((−1)^(n−1) )/n) =−Σ_(n=2) ^∞  (((−1)^n )/n)  =−{Σ_(n=1) ^∞  (((−1)^n )/n) +1) =−(−ln(2))−1 =ln(2)−1  Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^2 ) =−Σ_(n=2) ^∞  (((−1)^n )/n^2 )  =−{ Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +1) =−(−(π^2 /(12)))−1 =(π^2 /(12)) −1  Σ_(n=1) ^∞   (((−1)^n )/((n+1)^3 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^3 ) =−Σ_(n=2) ^∞  (((−1)^n )/n^3 )  for that let  calculate δ(x) =Σ_(n=1) ^∞  (((−1)^n )/n^x ) interms of  ξ(x) =Σ_(n=1) ^∞  (1/n^x )      (x>1)  we have   δ(x) =Σ_(n=1) ^∞   (1/(2^x n^x )) − Σ_(n=0) ^∞  (1/((2n+1)^x ))   ξ(x) =Σ_(n=1) ^∞  (1/n^x ) =(1/2^x ) ξ(x) +Σ_(n=0) ^∞  (1/((2n+1)^x )) ⇒  Σ_(n=0) ^∞   (1/((2n+1)^x )) =(1−2^(−x) )ξ(x) ⇒  δ(x) =2^(−x) ξ(x)−(1−2^(−x) )ξ(x) =(2^(1−x) −1)ξ(x)  Σ_(n=1) ^∞  (((−1)^n )/n^3 ) =(2^(−2) −1)ξ(3)=((1/4)−1)ξ(3) =−(3/4)ξ(3)  Σ_(n=1) ^∞  (((−1)^n )/n^4 ) =(2^(−3) −1)ξ(4) =((1/8) −1)ξ(4) =−(7/8)ξ(4)  so the value of S is determined...
n=1(1)nn=ln(2)n=1(1)nn2=14n=11n2n=01(2n+1)2n=11n2=14n=11n2+n=01(2n+1)2n=01(2n+1)2=34ξ(2)=34π26=π28n=1(1)nn2=π224π28=2π224=π212n=1(1)nn+1=n=2(1)n1n=n=2(1)nn={n=1(1)nn+1)=(ln(2))1=ln(2)1n=1(1)n(n+1)2=n=2(1)n1n2=n=2(1)nn2={n=1(1)nn2+1)=(π212)1=π2121n=1(1)n(n+1)3=n=2(1)n1n3=n=2(1)nn3forthatletcalculateδ(x)=n=1(1)nnxintermsofξ(x)=n=11nx(x>1)wehaveδ(x)=n=112xnxn=01(2n+1)xξ(x)=n=11nx=12xξ(x)+n=01(2n+1)xn=01(2n+1)x=(12x)ξ(x)δ(x)=2xξ(x)(12x)ξ(x)=(21x1)ξ(x)n=1(1)nn3=(221)ξ(3)=(141)ξ(3)=34ξ(3)n=1(1)nn4=(231)ξ(4)=(181)ξ(4)=78ξ(4)sothevalueofSisdetermined

Leave a Reply

Your email address will not be published. Required fields are marked *