Menu Close

find-the-value-of-n-1-2-n-3-3n-2-2n-




Question Number 33591 by abdo imad last updated on 19/Apr/18
find the value of  Σ_(n=1) ^∞    (2/(n^3   +3n^2  +2n)) .
findthevalueofn=12n3+3n2+2n.
Commented by abdo imad last updated on 20/Apr/18
let put S_n = Σ_(k=1) ^n    (2/(k^3  +3k^2  +2k))  we have  k^3  +3k^2  +2k =k( k^2  +3k +2)=k( k^2  +k +2k+2)  =k (k(k+1) +2(k+1))=k(k+1)(k+2) let decompose  F(x)= (2/(x(x+1)(x+2))) = (a/x) +(b/(x+1)) +(c/(x+2))  a =lim_(x→0) xF(x) = 1  b =lim_(x→−1) (x+1)F(x)= (2/((−1).1)) =−2  c =lim_(x→−2) (x+2)F(x) = (2/((−2)(−1))) =1 ⇒  F(x)=(1/x) −(2/(x+1)) +(1/(x+2))  and  S_n = Σ_(k=1) ^n ( (1/k) −(2/(k+1)) +(1/(k+2)))=Σ_(k=1) ^n  (1/k) −2Σ_(k=1) ^n (1/(k+1)) +Σ_(k=1) ^n (1/(k+2))  Σ_(k=1) ^n  (1/k) = H_n   Σ_(k=1) ^n  (1/(k+1)) =Σ_(k=2) ^(n+1)  (1/k) =H_(n+1)   −1  Σ_(k=1) ^n   (1/(k+2)) =Σ_(k=3) ^(n+2)  (1/k)   = H_(n+2)  −(3/2) ⇒  S_n  = H_n  −2( H_(n+1)  −1) +H_(n+2)  −(3/2)  S_n  =H_n  +H_(n+2)  −2H_(n+1)   +2 −(3/2) =H_n  +H_(n+2)  −2H_(n+1)  +(1/2)  but H_n = ln(n) +γ +o((1/n))  H_(n+2)  =ln(n+2) +γ  +o((1/n))  H_(n+1)  = ln(n+1) +γ +o((1/n)) ⇒  S_n =ln(n(n+2)) +2γ  −2ln(n+1) −2γ  +o((1/n)) +(1/2)  =ln(((n^2  +2n)/((n+1)^2 ))) +(1/2) ⇒ lim_(n→+∞) S_n  =(1/2) ⇒  ★Σ_(n=1) ^∞    (2/(n^3  +3n^2  +2n)) = (1/2) ★
letputSn=k=1n2k3+3k2+2kwehavek3+3k2+2k=k(k2+3k+2)=k(k2+k+2k+2)=k(k(k+1)+2(k+1))=k(k+1)(k+2)letdecomposeF(x)=2x(x+1)(x+2)=ax+bx+1+cx+2a=limx0xF(x)=1b=limx1(x+1)F(x)=2(1).1=2c=limx2(x+2)F(x)=2(2)(1)=1F(x)=1x2x+1+1x+2andSn=k=1n(1k2k+1+1k+2)=k=1n1k2k=1n1k+1+k=1n1k+2k=1n1k=Hnk=1n1k+1=k=2n+11k=Hn+11k=1n1k+2=k=3n+21k=Hn+232Sn=Hn2(Hn+11)+Hn+232Sn=Hn+Hn+22Hn+1+232=Hn+Hn+22Hn+1+12butHn=ln(n)+γ+o(1n)Hn+2=ln(n+2)+γ+o(1n)Hn+1=ln(n+1)+γ+o(1n)Sn=ln(n(n+2))+2γ2ln(n+1)2γ+o(1n)+12=ln(n2+2n(n+1)2)+12limn+Sn=12n=12n3+3n2+2n=12
Answered by sma3l2996 last updated on 19/Apr/18
  Σ_(n=1) ^∞ (2/(n^3 +3n^2 +2n))=Σ_(n=1) ^∞ (2/(n(n+1)(n+2)))  (1/(n(n+1)(n+2)))=(a/n)+(b/(n+1))+(c/(n+2))  a=(1/2) ; b=−1 ; c=(1/2)  Σ_(n=1) ^∞ (2/(n(n+1)(n+2)))=Σ_(n=1) ^∞ ((1/n)−(2/(n+1))+(1/(n+2)))  =Σ_(n=1) ^∞ (1/n)−Σ_(n=1) ^∞ (2/(n+1))+Σ_(n=1) ^∞ (1/(n+2))  let  l=n+1  and  k=n+2  Σ_(n=1) ^∞ (2/(n(n+1)(n+2)))=Σ_(n=1) ^∞ (1/n)−Σ_(l=2) ^∞ (2/l)+Σ_(k=3) ^∞ (1/k)  =Σ_(n=1) ^∞ (1/n)−(Σ_(l=1) ^∞ (2/l)−(2/1))+(Σ_(k=1) ^∞ (1/k)−(1/1)−(1/2))  =Σ_(n=1) ^∞ (1/n)−Σ_(l=1) ^∞ (2/l)+Σ_(k=1) ^∞ (1/k)+2−1−(1/2)  =Σ_(n=1) ^∞ ((1/n)−(2/n)+(1/n))+(1/2)=(1/2)
n=12n3+3n2+2n=n=12n(n+1)(n+2)1n(n+1)(n+2)=an+bn+1+cn+2a=12;b=1;c=12n=12n(n+1)(n+2)=n=1(1n2n+1+1n+2)=n=11nn=12n+1+n=11n+2letl=n+1andk=n+2n=12n(n+1)(n+2)=n=11nl=22l+k=31k=n=11n(l=12l21)+(k=11k1112)=n=11nl=12l+k=11k+2112=n=1(1n2n+1n)+12=12

Leave a Reply

Your email address will not be published. Required fields are marked *