find-the-value-of-n-1-2-n-3-3n-2-2n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 33591 by abdo imad last updated on 19/Apr/18 findthevalueof∑n=1∞2n3+3n2+2n. Commented by abdo imad last updated on 20/Apr/18 letputSn=∑k=1n2k3+3k2+2kwehavek3+3k2+2k=k(k2+3k+2)=k(k2+k+2k+2)=k(k(k+1)+2(k+1))=k(k+1)(k+2)letdecomposeF(x)=2x(x+1)(x+2)=ax+bx+1+cx+2a=limx→0xF(x)=1b=limx→−1(x+1)F(x)=2(−1).1=−2c=limx→−2(x+2)F(x)=2(−2)(−1)=1⇒F(x)=1x−2x+1+1x+2andSn=∑k=1n(1k−2k+1+1k+2)=∑k=1n1k−2∑k=1n1k+1+∑k=1n1k+2∑k=1n1k=Hn∑k=1n1k+1=∑k=2n+11k=Hn+1−1∑k=1n1k+2=∑k=3n+21k=Hn+2−32⇒Sn=Hn−2(Hn+1−1)+Hn+2−32Sn=Hn+Hn+2−2Hn+1+2−32=Hn+Hn+2−2Hn+1+12butHn=ln(n)+γ+o(1n)Hn+2=ln(n+2)+γ+o(1n)Hn+1=ln(n+1)+γ+o(1n)⇒Sn=ln(n(n+2))+2γ−2ln(n+1)−2γ+o(1n)+12=ln(n2+2n(n+1)2)+12⇒limn→+∞Sn=12⇒★∑n=1∞2n3+3n2+2n=12★ Answered by sma3l2996 last updated on 19/Apr/18 ∑∞n=12n3+3n2+2n=∑∞n=12n(n+1)(n+2)1n(n+1)(n+2)=an+bn+1+cn+2a=12;b=−1;c=12∑∞n=12n(n+1)(n+2)=∑∞n=1(1n−2n+1+1n+2)=∑∞n=11n−∑∞n=12n+1+∑∞n=11n+2letl=n+1andk=n+2∑∞n=12n(n+1)(n+2)=∑∞n=11n−∑∞l=22l+∑∞k=31k=∑∞n=11n−(∑∞l=12l−21)+(∑∞k=11k−11−12)=∑∞n=11n−∑∞l=12l+∑∞k=11k+2−1−12=∑∞n=1(1n−2n+1n)+12=12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-decompose-F-x-1-x-2-4-x-3-2-2-calculate-4-dx-x-2-4-x-3-2-Next Next post: calculate-lim-x-0-2-1-cosx-sinx-x-3-1-x-2-1-4-sin-5-x-x-5- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.