Menu Close

Find-the-value-of-n-1-n-2-1-n-2-x-n-n-




Question Number 61922 by Tawa1 last updated on 11/Jun/19
Find the value of:     Σ_(n = 1) ^∞   ((n^2  + 1)/(n + 2)). (x^n /(n!))
Findthevalueof:n=1n2+1n+2.xnn!
Commented by maxmathsup by imad last updated on 12/Jun/19
let p(x) =Σ_(n=1) ^∞  ((n^2 +1)/(n+2)) (x^(n+2) /(n!)) ⇒((p(x))/x^2 ) =Σ_(n=1) ^∞  ((n^2 +1)/(n+2)) (x^n /(n!))  let find p(x)  p^′ (x) =Σ_(n=1) ^∞ ((n^2 +1)/(n!)) x^(n+1)  =x{ Σ_(n=1) ^∞ (n^2 /(n!)) x^n  +Σ_(n=1) ^∞  (x^n /(n!))}  Σ_(n=1) ^∞  (x^n /(n!)) =e^x −1  Σ_(n=1) ^∞  (n^2 /(n!))x^n  =Σ_(n=1) ^∞  (n/((n−1)!))x^n  =Σ_(n=1) ^∞ ((n−1 +1)/((n−1)!)) x^n  =Σ_(n=1) ^∞ ((n−1)/((n−1)!))x^n  +Σ_(n=1) ^∞  (x^n /((n−1)!))  =Σ_(n=2) ^∞   (x^n /((n−2)!))  +Σ_(n=0) ^∞  (x^(n+1) /(n!)) =Σ_(n=0) ^∞   (x^(n+2) /(n!)) +Σ_(n=0) ^∞  (x^(n+1) /(n!)) =x^2 e^x   +x e^x   =(x^2  +x)e^x  ⇒p^′ (x) =x{ (x^2  +x)e^x  +e^x −1} =x{(x^2 +x+1)e^x −1}  =(x^3  +x^2  +x)e^x  −x ⇒p(x) =∫(x^3  +x^2  +x)e^x dx−(x^2 /2) +c  ∫xe^x  =xe^x −∫e^x  dx =xe^x −e^x  =(x−1)e^x   ∫ x^2 e^x dx =x^2 e^x  −∫2x e^x dx =x^2 e^x −2(x−1)e^x  =(x^2 −2x+2)e^x   ∫x^3 e^x dx  =x^3 e^x  −∫ 3x^2  e^x dx =x^3 e^x −3(x^2 −2x+2)e^x   =(x^3 −3x^2  +6x −6)e^x  ⇒  p(x) =(x^3 −3x^2  +6x−6 +x^2 −2x+2 +x−1)e^x  −(x^2 /2) +c  =(x^3 −2x^2 +5x −5)e^x  −(x^2 /2) +c  p(0) =0 =−5 +c ⇒c =5 ⇒p(x) =(x^3 −2x^2  +5x−5)e^x  −(x^2 /2) +5 ⇒  Σ_(n=1) ^∞  ((n^2 +1)/(n+2)) (x^n /(n!)) =((p(x))/x^2 ) =(x−2+(5/x) −(5/x^2 ))e^x −(1/2) +(5/x^2 )    (   x≠0) .
letp(x)=n=1n2+1n+2xn+2n!p(x)x2=n=1n2+1n+2xnn!letfindp(x)p(x)=n=1n2+1n!xn+1=x{n=1n2n!xn+n=1xnn!}n=1xnn!=ex1n=1n2n!xn=n=1n(n1)!xn=n=1n1+1(n1)!xn=n=1n1(n1)!xn+n=1xn(n1)!=n=2xn(n2)!+n=0xn+1n!=n=0xn+2n!+n=0xn+1n!=x2ex+xex=(x2+x)exp(x)=x{(x2+x)ex+ex1}=x{(x2+x+1)ex1}=(x3+x2+x)exxp(x)=(x3+x2+x)exdxx22+cxex=xexexdx=xexex=(x1)exx2exdx=x2ex2xexdx=x2ex2(x1)ex=(x22x+2)exx3exdx=x3ex3x2exdx=x3ex3(x22x+2)ex=(x33x2+6x6)exp(x)=(x33x2+6x6+x22x+2+x1)exx22+c=(x32x2+5x5)exx22+cp(0)=0=5+cc=5p(x)=(x32x2+5x5)exx22+5n=1n2+1n+2xnn!=p(x)x2=(x2+5x5x2)ex12+5x2(x0).
Commented by Tawa1 last updated on 12/Jun/19
God bless you sir
Godblessyousir
Commented by Mr X pcx last updated on 12/Jun/19
you are welcome sir.
youarewelcomesir.
Answered by Smail last updated on 12/Jun/19
((n^2 +1)/(n+2))=(((n+2)(n−2)+5)/(n+2))=n−2+(5/(n+2))  Let f(x)=Σ_(n=1) ^∞ ((n^2 +1)/(n+2))×(x^n /(n!))  f(x)=Σ_(n=1) ^∞ (n−2+(5/(n+2)))(x^n /(n!))  =Σ_(n=1) ^∞ (n/(n!))x^n −2Σ_(n=1) ^∞ (x^n /(n!))+5Σ_(n=1) ^∞ (x^n /((n+2)n!))  =Σ_(n=0) ^∞ (x^(n+1) /(n!))−2(Σ_(n=0) ^∞ (x^n /(n!))−1)+(5/x^2 )Σ_(n=1) ^∞ (x^(n+2) /((n+2)n!))  =xe^x −2(e^x −1)+(5/x^2 )p(x)  p(x)=Σ_(n=1) ^∞ (x^(n+2) /((n+2)n!))  p′(x)=Σ_(n=1) ^∞ (x^(n+1) /(n!))=x(e^x −1)  p(x)=∫_0 ^x (te^t −t)dt=[e^t (t−1)−(t^2 /2)]_0 ^x   p(x)=e^x (x−1)−(x^2 /2)+1  f(x)=xe^x −2e^x +2+(5/x^2 )(e^x (x−1)−(x^2 /2)+1)  f(x)=Σ_(n=1) ^∞ ((n^2 +1)/((n+2)n!))x^n =e^x (x−2+((5(x−1))/x^2 ))+(5/x^2 )−(1/2)
n2+1n+2=(n+2)(n2)+5n+2=n2+5n+2Letf(x)=n=1n2+1n+2×xnn!f(x)=n=1(n2+5n+2)xnn!=n=1nn!xn2n=1xnn!+5n=1xn(n+2)n!=n=0xn+1n!2(n=0xnn!1)+5x2n=1xn+2(n+2)n!=xex2(ex1)+5x2p(x)p(x)=n=1xn+2(n+2)n!p(x)=n=1xn+1n!=x(ex1)p(x)=0x(tett)dt=[et(t1)t22]0xp(x)=ex(x1)x22+1f(x)=xex2ex+2+5x2(ex(x1)x22+1)f(x)=n=1n2+1(n+2)n!xn=ex(x2+5(x1)x2)+5x212
Commented by Tawa1 last updated on 12/Jun/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *