Question Number 61922 by Tawa1 last updated on 11/Jun/19

Commented by maxmathsup by imad last updated on 12/Jun/19

Commented by Tawa1 last updated on 12/Jun/19

Commented by Mr X pcx last updated on 12/Jun/19

Answered by Smail last updated on 12/Jun/19
![((n^2 +1)/(n+2))=(((n+2)(n−2)+5)/(n+2))=n−2+(5/(n+2)) Let f(x)=Σ_(n=1) ^∞ ((n^2 +1)/(n+2))×(x^n /(n!)) f(x)=Σ_(n=1) ^∞ (n−2+(5/(n+2)))(x^n /(n!)) =Σ_(n=1) ^∞ (n/(n!))x^n −2Σ_(n=1) ^∞ (x^n /(n!))+5Σ_(n=1) ^∞ (x^n /((n+2)n!)) =Σ_(n=0) ^∞ (x^(n+1) /(n!))−2(Σ_(n=0) ^∞ (x^n /(n!))−1)+(5/x^2 )Σ_(n=1) ^∞ (x^(n+2) /((n+2)n!)) =xe^x −2(e^x −1)+(5/x^2 )p(x) p(x)=Σ_(n=1) ^∞ (x^(n+2) /((n+2)n!)) p′(x)=Σ_(n=1) ^∞ (x^(n+1) /(n!))=x(e^x −1) p(x)=∫_0 ^x (te^t −t)dt=[e^t (t−1)−(t^2 /2)]_0 ^x p(x)=e^x (x−1)−(x^2 /2)+1 f(x)=xe^x −2e^x +2+(5/x^2 )(e^x (x−1)−(x^2 /2)+1) f(x)=Σ_(n=1) ^∞ ((n^2 +1)/((n+2)n!))x^n =e^x (x−2+((5(x−1))/x^2 ))+(5/x^2 )−(1/2)](https://www.tinkutara.com/question/Q61932.png)
Commented by Tawa1 last updated on 12/Jun/19
