Menu Close

Find-the-value-of-n-1-n-2-2-n-1-




Question Number 33088 by Joel578 last updated on 10/Apr/18
Find the value of  Σ_(n=1) ^∞  (n^2 /2^(n−1) )
Findthevalueofn=1n22n1
Commented by abdo imad last updated on 10/Apr/18
let consider the serie s(x)= Σ_(n=0) ^∞  x^n     with ∣x∣<1  we have s(x)=(1/(1−x)) ⇒ s^′ (x)= (1/((1−x)^2 )) ⇒Σ_(n=1) ^∞ n x^(n−1)   =(1/((1−x)^2 ))  also s^(′′) (x)=−((2(−1)(1−x))/((1−x)^4 )) =(2/((1−x)^3 )) ⇒  Σ_(n=2) ^∞ n(n−1)x^(n−2)  = (2/((1−x)^3 )) ⇒  Σ_(n=2) ^∞ n(n−1)x^(n−1)   =((2x)/((1−x)^3 )) ⇒  Σ_(n=2) ^∞  n^2 x^(n−1)  =((2x)/((1−x)^3 )) +Σ_(n=2) ^∞  nx^(n−1)   =((2x)/((1−x)^3 )) +(1/((1−x)^2 )) −1 ⇒Σ_(n=1) ^∞  n^2  x^(n−1)  =((2x)/((1−x)^3 )) +(1/((1−x)^2 ))  after we take x=(1/2) ⇒  Σ_(n=1) ^∞  (n^2 /2^(n−1) )  =  (1/(((1/2))^3 ))  + (1/(((1/2))^2 ))  = 8 +4 =12  .
letconsidertheseries(x)=n=0xnwithx∣<1wehaves(x)=11xs(x)=1(1x)2n=1nxn1=1(1x)2alsos(x)=2(1)(1x)(1x)4=2(1x)3n=2n(n1)xn2=2(1x)3n=2n(n1)xn1=2x(1x)3n=2n2xn1=2x(1x)3+n=2nxn1=2x(1x)3+1(1x)21n=1n2xn1=2x(1x)3+1(1x)2afterwetakex=12n=1n22n1=1(12)3+1(12)2=8+4=12.
Commented by abdo imad last updated on 10/Apr/18
remark  ★we have 2 Σ_(n=1) ^∞   (n^2 /2^n ) =12 ⇒ Σ_(n=1) ^∞  (n^2 /2^n )  =6 .
remarkwehave2n=1n22n=12n=1n22n=6.
Commented by Joel578 last updated on 13/Apr/18
Thank you very much
Thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *