Menu Close

find-the-value-of-n-1-n-3-3-n-




Question Number 46852 by maxmathsup by imad last updated on 01/Nov/18
find the value of Σ_(n=1) ^∞  (n^3 /3^n )
findthevalueofn=1n33n
Commented by maxmathsup by imad last updated on 02/Nov/18
we have proved that for ∣x∣<1  Σ_(n=1) ^∞  nx^n  =(x/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  n^2 x^(n−1)  =(((1−x)^2 +2x(1−x))/((1−x)^4 )) = ((1−x +2x)/((1−x)^3 ))=((x+1)/((1−x)^3 ))⇒   n^2 x^n   =((x^2 +x)/((1−x)^3 )) ⇒ Σ_(n=1) ^∞  n^3 x^(n−1)  =(((2x+1)(1−x)^3 +3(1−x)^2 (x^2 +x))/((1−x)^6 ))  =(((2x+1)(1−x)+3(x^2 +x))/((1−x)^4 )) =((2x−2x^2 +1−x  +3x^2  +3x)/((1−x)^4 )) =((x^2 +4x +1)/((1−x)^4 )) ⇒  Σ_(n=1) ^∞  n^3 x^n  =((x^3  +4x^2  +x)/((1−x)^4 ))  x=(1/3) ⇒Σ_(n=1) ^∞  n^3 ((1/3))^n  =(((1/(27))+(4/9)+(1/3))/(((2/3))^4 )) =(1/(27)) ((1 +12+9)/(2^4 /3^4 )) =(1/(27)) (3^4 /2^4 ) .22  =(3/(8.2)) .((11.2)/1)  =((33)/8) ⇒ ★Σ_(n=1) ^∞  (n^3 /3^n )  =((33)/8) ★
wehaveprovedthatforx∣<1n=1nxn=x(1x)2n=1n2xn1=(1x)2+2x(1x)(1x)4=1x+2x(1x)3=x+1(1x)3n2xn=x2+x(1x)3n=1n3xn1=(2x+1)(1x)3+3(1x)2(x2+x)(1x)6=(2x+1)(1x)+3(x2+x)(1x)4=2x2x2+1x+3x2+3x(1x)4=x2+4x+1(1x)4n=1n3xn=x3+4x2+x(1x)4x=13n=1n3(13)n=127+49+13(23)4=1271+12+92434=1273424.22=38.2.11.21=338n=1n33n=338
Answered by Smail last updated on 02/Nov/18
(1/(1−x))=Σ_(n=0) ^∞ x^n   with  ∣x∣<1  (1/((1−x)^2 ))=Σ_(n=1) ^∞ nx^(n−1)   (x/((1−x)^2 ))=Σ_(n=1) ^∞ nx^n   −((1+x)/((1−x)^3 ))=Σ_(n=1) ^∞ n^2 x^(n−1) ⇔((−x(1+x))/((1−x)^3 ))=Σ_(n=1) ^∞ n^2 x^n   Σ_(n=1) ^∞ n^3 x^(n−1) =(((2x+1)(1−x)+3x(1+x))/((1−x)^4 ))  =((x^2 +4x+1)/((1−x)^4 ))  Σ_(n=1) ^∞ n^3 x^n =((x(x^2 +4x+1))/((1−x)^4 ))  x=(1/3)  Σ_(n=1) ^∞ (n^3 /3^n )=(((1/9)+(4/3)+1)/(3((2/3))^4 ))=((33)/8)
11x=n=0xnwithx∣<11(1x)2=n=1nxn1x(1x)2=n=1nxn1+x(1x)3=n=1n2xn1x(1+x)(1x)3=n=1n2xnn=1n3xn1=(2x+1)(1x)+3x(1+x)(1x)4=x2+4x+1(1x)4n=1n3xn=x(x2+4x+1)(1x)4x=13n=1n33n=19+43+13(23)4=338
Commented by maxmathsup by imad last updated on 02/Nov/18
correct answer thanks sir .
correctanswerthankssir.
Commented by Smail last updated on 02/Nov/18
Thank you for posting quistions like this.
Thankyouforpostingquistionslikethis.

Leave a Reply

Your email address will not be published. Required fields are marked *