Menu Close

find-the-value-of-n-2-1-n-1-2-n-1-2-




Question Number 36820 by maxmathsup by imad last updated on 06/Jun/18
find the value of Σ_(n=2) ^∞   (1/((n−1)^2 (n+1)^2 ))
findthevalueofn=21(n1)2(n+1)2
Commented by math khazana by abdo last updated on 24/Jun/18
let S_n =Σ_(k=2S) ^n   (1/((n−1)^2 (n+1)^2 ))  we have S=lim_(n→+∞) S_n   let decompose F(x)= (1/((x−1)^2 (x+1)^2 ))  F(x)= (a/(x−1)) +(b/((x−1)^2 )) +(c/(x+1)) +(d/((x+1)^2 ))  b=lim_(x→1) (x−1)^2 F(x)=(1/4)  d=lim_(x→−1)  (x+1)^2 F(x)=(1/4) ⇒  F(x)= (a/(x−1)) +(1/(4(x−1)^2 )) +(c/(x+1)) +(1/(4(x+1)^2 ))  lim_(x→+∞) xF(x)=0=a+c ⇒c=−a ⇒  F(x)= (a/(x−1)) −(a/(x+1))  +(1/(4(x−1)^2 )) +(1/(4(x+1)^2 ))  F(0)=1=−2a  +(1/2) ⇒−2a=(1/2) ⇒a=−(1/4) ⇒  F(x)= (1/(4(x+1))) −(1/(4(x−1))) +(1/(4(x−1)^2 )) +(1/(4(x+1)^2 ))  4S_n = Σ_(k=2) ^n   (1/(k+1)) −Σ_(k=2) ^n  (1/(k−1)) +Σ_(k=2) ^n  (1/((k−1)^2 ))  +Σ_(k=2) ^n  (1/((k+1)^2 )) but  Σ_(k=2) ^n   (1/(k+1)) =Σ_(k=3) ^(n+1)    (1/k)= H_(n+1) −(3/2)  Σ_(k=2) ^n  (1/(k−1)) =Σ_(k=1) ^(n−1)  (1/k) =H_(n−1)   Σ_(k=2) ^n  (1/((k−1)^2 )) = Σ_(k=1) ^(n−1)  (1/k^2 ) =ξ_(n−1) (2)  Σ_(k=2) ^n   (1/((k+1)^2 )) =Σ_(k=3) ^(n+1)  (1/k^2 ) =ξ_(n+1) (2)−(5/4) ⇒  4S_n = H_(n+1) −(3/2) −H_(n−1)   +ξ_(n−1) (2) +ξ_(n+1) (2)−(5/4)  4S_n =γ +ln(n+1) +o((1/n))−γ−ln(n−1)−o((1/n))  +ξ_(n−1) (2)+ξ_(n+1) (2) −((11)/4) ⇒  4 S_n  → ((2π^2 )/6) −((11)/4) =(π^2 /3) −((11)/4) ⇒  lim_(n→+∞)  S_n = (π^2 /(12)) −((11)/(16)) = S.
letSn=k=2Sn1(n1)2(n+1)2wehaveS=limn+SnletdecomposeF(x)=1(x1)2(x+1)2F(x)=ax1+b(x1)2+cx+1+d(x+1)2b=limx1(x1)2F(x)=14d=limx1(x+1)2F(x)=14F(x)=ax1+14(x1)2+cx+1+14(x+1)2limx+xF(x)=0=a+cc=aF(x)=ax1ax+1+14(x1)2+14(x+1)2F(0)=1=2a+122a=12a=14F(x)=14(x+1)14(x1)+14(x1)2+14(x+1)24Sn=k=2n1k+1k=2n1k1+k=2n1(k1)2+k=2n1(k+1)2butk=2n1k+1=k=3n+11k=Hn+132k=2n1k1=k=1n11k=Hn1k=2n1(k1)2=k=1n11k2=ξn1(2)k=2n1(k+1)2=k=3n+11k2=ξn+1(2)544Sn=Hn+132Hn1+ξn1(2)+ξn+1(2)544Sn=γ+ln(n+1)+o(1n)γln(n1)o(1n)+ξn1(2)+ξn+1(2)1144Sn2π26114=π23114limn+Sn=π2121116=S.
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jun/18
T_n =(1/((n+1)^2 (n−1)^2 ))=(1/2)(((n+1)−(n−1))/((n+1)^2 (n−1)^2 ))  =(1/2)(1/((n+1)(n−1)^2 ))−(1/2)(1/((n+1)^2 (n−1)))  =(1/4)×(((n+1)−(n−1))/((n+1)(n−1)^2 ))−(1/4)×(((n+1)−(n−1))/((n+1)^2 (n−1)))    =(1/4)×(1/((n−1)^2 ))−(1/4)×(1/((n+1)(n−1)))−   (1/4)×(1/((n+1)(n−1)))+(1/4)×(1/((n+1)^2 ))  =(1/4)×(1/((n−1)^2 ))−(1/2)×(1/((n+1)(n−1)))+(1/4)×(1/((n+1)^2 ))  so  S_n =S_1 −S_2 +S_3       (n>1)  S_1 =(1/4)((1/1^2 )+(1/2^2 )+(1/3^2 )+.....)=(1/4)×(Π^2 /6)  S_2 =(1/4){(((n+1)−(n−1))/((n+1)(n−1)))}  =(1/4){(1/(n−1))−(1/(n+1))}  ={(1/4)((1/1)+(1/2)+(1/3)+...)−(1/4)((1/3)+(1/4)+(1/5)+(1/6)...)}  =(1/4)×(3/2)=(3/8)  S_3 =(1/4)×{(1/((n+1)^2 ))}  =(1/4)×((1/3^2 )+(1/4^2 )+(1/5^2 )+....)  =(1/4)×((Π^2 /6)−(1/1^2 )−(1/2^2 ))=(1/4)((Π^2 /6)−(5/4))  S_n =S_1 −S_2 +S_3   =(1/4)×(Π^2 /6)−(1/4)×(3/2)+(1/4)((Π^2 /6)−(5/4))  =(1/4)×{(Π^2 /6)−(3/2)+(Π^2 /6)−(5/4)}  =(1/4)×{((2Π^2 )/6)−((11)/4)}
Tn=1(n+1)2(n1)2=12(n+1)(n1)(n+1)2(n1)2=121(n+1)(n1)2121(n+1)2(n1)=14×(n+1)(n1)(n+1)(n1)214×(n+1)(n1)(n+1)2(n1)=14×1(n1)214×1(n+1)(n1)14×1(n+1)(n1)+14×1(n+1)2=14×1(n1)212×1(n+1)(n1)+14×1(n+1)2soSn=S1S2+S3(n>1)S1=14(112+122+132+..)=14×26S2=14{(n+1)(n1)(n+1)(n1)}=14{1n11n+1}={14(11+12+13+)14(13+14+15+16)}=14×32=38S3=14×{1(n+1)2}=14×(132+142+152+.)=14×(26112122)=14(2654)Sn=S1S2+S3=14×2614×32+14(2654)=14×{2632+2654}=14×{226114}
Commented by math khazana by abdo last updated on 24/Jun/18
correct answer sir Tanmay...
correctanswersirTanmay

Leave a Reply

Your email address will not be published. Required fields are marked *