Menu Close

find-the-value-of-n-2-3n-2-1-n-1-3-n-1-3-




Question Number 38520 by math khazana by abdo last updated on 26/Jun/18
find the value of Σ_(n=2) ^∞   ((3n^2  +1)/((n−1)^3 (n+1)^3 ))
findthevalueofn=23n2+1(n1)3(n+1)3
Commented by abdo mathsup 649 cc last updated on 28/Jun/18
let S_n =Σ_(k=2) ^n   ((3k^2  +1)/((k−1)^3 )(k+1)^3 ))  we have (k+1)^3 −(k−1)^3   =(k+1−k+1)( (k+1)^2  +(k−1)(k+1) +(k−1)^2 )  =2{  k^2  +2k+1 +k^2 −1 +k^(2 ) −2k+1}  =2{3k^2  +1}⇒  S_n =(1/2) Σ_(k=2) ^n    (((n+1)^3  −(n−1)^3 )/((n+1)^3 (n−1)^3 ))  =(1/2) Σ_(k=2) ^n   (1/((n−1)^3 )) −(1/2) Σ_(k=2) ^n  (1/((n+1)^3 ))  =(1/2)Σ_(k=1) ^(n−1)  (1/k^3 ) −(1/2) Σ_(k=3) ^(n+1)  (1/k^3 )  =(1/2) ξ_(n−1) (3) −(1/2){ ξ_(n+1) (3)−1 −(1/8)}  =(1/2){ ξ_(n−1) (3)−ξ_(n+1) (3)} +(9/(16)) but  lim_(n→∞) ξ_(n−1) (3)=ξ(3)  lim_(n→∞) ξ_(n+1) (3)=ξ(3) ⇒lim_(n→+∞) S_n =(9/(16)) .
letSn=k=2n3k2+1(k1)3)(k+1)3wehave(k+1)3(k1)3=(k+1k+1)((k+1)2+(k1)(k+1)+(k1)2)=2{k2+2k+1+k21+k22k+1}=2{3k2+1}Sn=12k=2n(n+1)3(n1)3(n+1)3(n1)3=12k=2n1(n1)312k=2n1(n+1)3=12k=1n11k312k=3n+11k3=12ξn1(3)12{ξn+1(3)118}=12{ξn1(3)ξn+1(3)}+916butlimnξn1(3)=ξ(3)limnξn+1(3)=ξ(3)limn+Sn=916.

Leave a Reply

Your email address will not be published. Required fields are marked *