find-the-value-of-n-2-3n-2-1-n-1-3-n-1-3- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 38520 by math khazana by abdo last updated on 26/Jun/18 findthevalueof∑n=2∞3n2+1(n−1)3(n+1)3 Commented by abdo mathsup 649 cc last updated on 28/Jun/18 letSn=∑k=2n3k2+1(k−1)3)(k+1)3wehave(k+1)3−(k−1)3=(k+1−k+1)((k+1)2+(k−1)(k+1)+(k−1)2)=2{k2+2k+1+k2−1+k2−2k+1}=2{3k2+1}⇒Sn=12∑k=2n(n+1)3−(n−1)3(n+1)3(n−1)3=12∑k=2n1(n−1)3−12∑k=2n1(n+1)3=12∑k=1n−11k3−12∑k=3n+11k3=12ξn−1(3)−12{ξn+1(3)−1−18}=12{ξn−1(3)−ξn+1(3)}+916butlimn→∞ξn−1(3)=ξ(3)limn→∞ξn+1(3)=ξ(3)⇒limn→+∞Sn=916. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: simlify-A-1-2-5-4-1-2-5-4-B-1-3-2-6-1-3-2-6-Next Next post: letf-x-2x-1-x-2-x-2-x-1-1-calculate-f-n-x-2-find-f-n-0-3-developp-f-at-integr-serie- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.