Menu Close

find-the-value-of-n-2-3n-2-1-n-2-1-3-




Question Number 41236 by maxmathsup by imad last updated on 04/Aug/18
find the value of  Σ_(n=2) ^∞    ((3n^2  +1)/((n^2 −1)^3 ))
findthevalueofn=23n2+1(n21)3
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Aug/18
(n+1)^3 −(n−1)^3 =(n^3 +3n^2 +3n+1)−(n^3 −3n^2 +3n−1)  =6^ n^2 +2  Σ_(n=2) ^∞ (1/2).(((n+1)^3 −(n−1)^3 )/((n+1)^3 (n−1)^3 ))  =(1/2)Σ_(n=2) ^∞ (1/((n−1)^3 ))−(1/((n+1)^3 ))=(1/2)Σ_2 ^∞ T_n   T_n =[(1/((n−1)^3 )) −(1/((n+1)^3 ))]  T_2 =(1/1^3 )−(1/3^3 )  T_3 =(1/2^3 )−(1/4^3 )  T_4 =(1/3^3 )−(1/5^3 )  T_5 =(1/4^3 )−(1/6^3 )  ....  ....  T_n =(1/((n−1)^3 ))−(1/((n+1)^3 ))  s=(1/1^3 )+(1/2^3 )−(1/((n+1)^3 ))  (1/2)Σ_2 ^∞ T_n  =(1/2)(1+(1/8))−lim_(n→∞) (1/((n+1)^3 ))=(9/(16))−0=(9/(16))    ]
(n+1)3(n1)3=(n3+3n2+3n+1)(n33n2+3n1)=6n2+2n=212.(n+1)3(n1)3(n+1)3(n1)3=12n=21(n1)31(n+1)3=122TnTn=[1(n1)31(n+1)3]T2=113133T3=123143T4=133153T5=143163..Tn=1(n1)31(n+1)3s=113+1231(n+1)3122Tn=12(1+18)limn1(n+1)3=9160=916]
Commented by prof Abdo imad last updated on 04/Aug/18
your answer is correct sir Tanmay thanks
youransweriscorrectsirTanmaythanks
Commented by tanmay.chaudhury50@gmail.com last updated on 04/Aug/18
thank you sir...
thankyousir
Answered by prof Abdo imad last updated on 04/Aug/18
S =lim_(n→+∞)  S_N   with S_N =Σ_(n=2) ^N  ((3n^(2 ) +1)/((n−1)^3 (n+1)^3 ))  but we have (n+1)^3 −(n−1)^3   =2((n+1)^2  +(n+1)(n−1) +(n−1)^3 )  =2(n^2  +2n+1 +n^2 −1 +n^2 −2n+1)  =2(3n^2 +1)⇒S_N =(1/2)Σ_(n=2) ^N (((n+1)^3 −(n−1)^3 )/((n−1)^3 (n+1)^3 ))  =(1/2){Σ_(n=2) ^N  (1/((n−1)^3 )) −Σ_(n=2) ^N  (1/((n+1)^3 ))}  but  Σ_(n=2) ^N  (1/((n−1)^3 )) =Σ_(n=1) ^(N−1)  (1/n^3 ) =ξ_(N−1) (3)  Σ_(n=2) ^N  (1/((n+1)^3 )) =Σ_(n=3) ^(N+1)  (1/n^3 ) =ξ_(N+1) (3)−1−(1/8) ⇒  S_N =(1/2){ ξ_(N−1) (3)−ξ_(N+1) (3) +(9/8)}but  lim_(N→+∞) ξ_(N−1) (3)−ξ_(N+1) (3)=ξ(3)−ξ(3)=0⇒  lim_(N→+∞)  S_N = (9/(16)) =S
S=limn+SNwithSN=n=2N3n2+1(n1)3(n+1)3butwehave(n+1)3(n1)3=2((n+1)2+(n+1)(n1)+(n1)3)=2(n2+2n+1+n21+n22n+1)=2(3n2+1)SN=12n=2N(n+1)3(n1)3(n1)3(n+1)3=12{n=2N1(n1)3n=2N1(n+1)3}butn=2N1(n1)3=n=1N11n3=ξN1(3)n=2N1(n+1)3=n=3N+11n3=ξN+1(3)118SN=12{ξN1(3)ξN+1(3)+98}butlimN+ξN1(3)ξN+1(3)=ξ(3)ξ(3)=0limN+SN=916=S

Leave a Reply

Your email address will not be published. Required fields are marked *