Menu Close

find-the-value-of-n-2-n-n-n-1-x-n-




Question Number 26567 by abdo imad last updated on 26/Dec/17
find the value of   Σ_(n≥2)  (((−)^n )/(n(n−1))) x^n
findthevalueofn2()nn(n1)xn
Commented by prakash jain last updated on 27/Dec/17
a_n =(((−1)^(n+1) )/(n(n+1)))x^(n+1)    n≥1  a_n =(−1)^(n+1) x^(n+1) ((1/n)−(1/(n+1)))  a_n =(−1)^(n+1) (x^(n+1) /n)−(−1)^(n+1) (x^(n+1) /(n+1))  S=x(x−(x^2 /2)+(x^3 /x)−+..)+          (x−(x^2 /2)+(x^3 /3)−(x^4 /4)+−..)−x  S=xln (1+x)+ln (1+x)−x  −1<x≤1
an=(1)n+1n(n+1)xn+1n1an=(1)n+1xn+1(1n1n+1)an=(1)n+1xn+1n(1)n+1xn+1n+1S=x(xx22+x3x+..)+(xx22+x33x44+..)xS=xln(1+x)+ln(1+x)x1<x1
Commented by abdo imad last updated on 28/Dec/17
let put S(x)= Σ_(n=2) ^∝  (((−1)^n )/(n(n−1))) x^n  for /x/<1  S(x)=Σ_(n≥2) (−1)^n ( (1/(n−1)) − (1/n))x^n   = −xΣ_(n≥2)  (((−x)^(n−1) )/(n−1)) − Σ_(n≥2)  (((−x)^n )/n)  =−x Σ_(n≥1) (((−x)^n )/n) − Σ_(n≥1)  (((−x)^n )/n) −x  but ln^, (1+u)= (1/(1+u)) = Σ _(n≥0) (−u)^n   ln(1+u)= Σ _(n≥0)  (−1)^(n ) (u^(n+1) /(n+1))  = Σ_(n≥1)   (−1)^(n−1)  (u^n /n)=− Σ_(n≥1) (−1)^n (u^n /n)  ⇒S(x)= xln(1+x)+ln(1+x)−x  =(x+1)lnx −x
letputS(x)=n=2(1)nn(n1)xnfor/x/<1S(x)=n2(1)n(1n11n)xn=xn2(x)n1n1n2(x)nn=xn1(x)nnn1(x)nnxbutln,(1+u)=11+u=Σn0(u)nln(1+u)=Σn0(1)nun+1n+1=n1(1)n1unn=n1(1)nunnS(x)=xln(1+x)+ln(1+x)x=(x+1)lnxx
Commented by abdo imad last updated on 28/Dec/17
your answer is true prakash
youransweristrueprakash
Commented by abdo imad last updated on 28/Dec/17
S(x)=(x+1)ln(x+1)−x
S(x)=(x+1)ln(x+1)x
Answered by prakash jain last updated on 28/Dec/17
for x=−1  a_n =(((−1)^(2n+2) )/(n(n+1)))  =(1/(n(n+1)))      n≥1  =((1/n)−(1/(n+1)))  Σ_(n=1) ^∞ a_n =1
forx=1an=(1)2n+2n(n+1)=1n(n+1)n1=(1n1n+1)n=1an=1
Commented by prakash jain last updated on 27/Dec/17
lim_(x→−1) (1+x)ln (1+x)−x=1
limx1(1+x)ln(1+x)x=1

Leave a Reply

Your email address will not be published. Required fields are marked *